
JACK Audio Connection Kit (JACK)
Client for Python

Release 0.2.0

Matthias Geier

June 11, 2015

Contents

1 Requirements 1

2 Installation 2

3 Usage 2

4 API Documentation 3

5 Version History 17

This Python module provides bindings for the JACK1 library.

Documentation: http://jackclient-python.rtfd.org/

Code: http://github.com/spatialaudio/jackclient-python/

Python Package Index: http://pypi.python.org/pypi/JACK-Client/

1 Requirements

Python: Of course, you’ll need Python2. Any version where CFFI (see below) is supported should work. If you
don’t have Python installed yet, you should get one of the distributions which already include CFFI (and
many other useful things), e.g. Anaconda3.

CFFI: The C Foreign Function Interface for Python4 is used to access the C-API of the JACK library from within
Python. It supports CPython 2.6, 2.7, 3.x; and is distributed with PyPy5 2.0 beta2 or later. You should install
it with your package manager (if it’s not installed already), or you can get it with pip6:

pip install cffi --user

1http://jackaudio.org/
2http://www.python.org/
3http://docs.continuum.io/anaconda/
4http://cffi.readthedocs.org/
5http://pypy.org/
6http://www.pip-installer.org/en/latest/installing.html

http://jackaudio.org/
http://jackclient-python.rtfd.org/
http://github.com/spatialaudio/jackclient-python/
http://pypi.python.org/pypi/JACK-Client/
http://www.python.org/
http://docs.continuum.io/anaconda/
http://cffi.readthedocs.org/
http://pypy.org/
http://www.pip-installer.org/en/latest/installing.html

JACK library: The JACK7 library must be installed on your system (and CFFI must be able to find it). Again,
you should use your package manager to install it. Make sure you install the JACK daemon (called jackd).
This will also install the JACK library package. If you prefer, you can of course also download the sources
and compile everything locally.

setuptools: This is needed for the installation of the Python module. Most systems will have this installed already,
but if not, you can install it with your package manager or you can get it with pip8:

pip install setuptools --user

2 Installation

Once you have installed the above-mentioned dependencies, you can use pip9 to download and install the latest
release with a single command:

pip install JACK-Client --user

If you want to install it system-wide for all users (assuming you have the necessary rights), you can just drop the
--user option.

To un-install, use:

pip uninstall JACK-Client

If you prefer, you can also download the package from PyPI10, extract it, change to the main directory and install
it using:

python setup.py install --user

If you want to get the newest development version from Github11:

git clone https://github.com/spatialaudio/jackclient-python.git
cd jackclient-python
python setup.py develop --user

This way, your installation always stays up-to-date, even if you pull new changes from the Github repository.

If you prefer, you can also replace the last command with:

pip install --user -e .

... where -e stands for --editable.

If you want to avoid installation altogether, you can simply copy jack.py to your working directory (or to any
directory in your Python path).

3 Usage

First, import the module:

import jack

Then, you most likely want to create a new JACK client:

client = jack.Client("MyGreatClient")

7http://jackaudio.org/
8http://www.pip-installer.org/en/latest/installing.html
9http://www.pip-installer.org/en/latest/installing.html

10http://pypi.python.org/pypi/JACK-Client/
11http://github.com/spatialaudio/jackclient-python/

http://jackaudio.org/
http://www.pip-installer.org/en/latest/installing.html
http://www.pip-installer.org/en/latest/installing.html
http://pypi.python.org/pypi/JACK-Client/
http://github.com/spatialaudio/jackclient-python/

You probably want to create some input and output ports, too:

client.inports.register("input_1")
client.outports.register("output_1")

These functions return the newly created port, so you can save it for later:

in2 = client.inports.register("input_2")
out2 = client.outports.register("output_2")

To see what you can do with the returned objects, have a look at the documentation of the class jack.OwnPort.

You can also check what other JACK ports are available:

portlist = client.get_ports()

If you want, you can also set all kinds of callback functions, for details see the API documentation for the class
jack.Client.

Once you are ready to run, you should activate your client:

client.activate()

Once the client is activated, you can make connections (this isn’t possible before activating the client):

client.connect("system:capture_1", "MyGreatClient:input_1")
client.connect("MyGreatClient:output_1", "system:playback_1")

You can also use the port objects from before instead of port names:

client.connect(out2, "system:playback_2")
in2.connect("system:capture_2")

You can also disconnect ports, there are again several possibilities:

client.disconnect("system:capture_1", "MyGreatClient:input_1")
client.disconnect(out2, "system:playback_2")
disconnect all connections with in2:
in2.disconnect()

If you don’t need your ports anymore, you can un-register them:

in2.unregister()
unregister all output ports:
client.outports.clear()

Finally, you can de-activate your JACK client and close it:

client.deactivate()
client.close()

4 API Documentation

JACK Client for Python.

http://jackclient-python.rtfd.org/

jack.CALL_AGAIN = 0
Possible return value for process callback.

jack.STOP_CALLING = 1
Possible return value for process callback.

jack.SUCCESS = 0
Possible return value for several callbacks.

http://jackclient-python.rtfd.org/

jack.FAILURE = 1
Possible return value for several callbacks.

class jack.Client(name, use_exact_name=False, no_start_server=False, servername=None, ses-
sion_id=None)

Create a new JACK client.

Parameters name (str) – The desired client name of at most client_name_size() char-
acters. The name scope is local to each server. Unless forbidden by the use_exact_name
option, the server will modify this name to create a unique variant, if needed.

Other Parameters

• use_exact_name (bool) – Whether an error should be raised if name is not unique. See
Status.name_not_unique.

• no_start_server (bool) – Do not automatically start the JACK server when it is not al-
ready running. This option is always selected if JACK_NO_START_SERVER is defined
in the calling process environment.

• servername (str) – Selects from among several possible concurrent server instances.
Server names are unique to each user. If unspecified, use "default" unless
JACK_DEFAULT_SERVER is defined in the process environment.

• session_id (str) – Pass a SessionID Token. This allows the sessionmanager to identify
the client again.

status = None
JACK status. See Status.

name
The name of the JACK client (read-only).

samplerate
The sample rate of the JACK system (read-only).

blocksize
The JACK block size (must be a power of two).

The current maximum size that will ever be passed to the process callback. It should only be queried
before activate() has been called. This size may change, clients that depend on it must register a
callback with set_blocksize_callback() so they will be notified if it does.

Changing the blocksize stops the JACK engine process cycle, then calls all registered callback func-
tions (see set_blocksize_callback()) before restarting the process cycle. This will cause a
gap in the audio flow, so it should only be done at appropriate stopping points.

realtime
Whether JACK is running with -R (--realtime).

frames_since_cycle_start
Time since start of audio block.

The estimated time in frames that has passed since the JACK server began the current process cycle.

frame_time
The estimated current time in frames.

This is intended for use in other threads (not the process callback). The return value can be compared
with the value of last_frame_time to relate time in other threads to JACK time.

last_frame_time
The precise time at the start of the current process cycle.

This may only be used from the process callback (see set_process_callback()), and can be
used to interpret timestamps generated by frame_time in other threads with respect to the current
process cycle.

This is the only jack time function that returns exact time: when used during the process callback
it always returns the same value (until the next process callback, where it will return that value +
blocksize, etc). The return value is guaranteed to be monotonic and linear in this fashion unless an
xrun occurs (see set_xrun_callback()). If an xrun occurs, clients must check this value again,
as time may have advanced in a non-linear way (e.g. cycles may have been skipped).

xrun_delayed_usecs
Delay in microseconds due to the most recent XRUN occurrence.

This probably only makes sense when queried from a callback defined using
set_xrun_callback().

inports
A list of audio input Ports.

New ports can be created and added to this list with the register() method. When
unregister() is called on one of the items in this list, this port is removed from the list. The
clear() method can be used to unregister all audio input ports at once.

See also:

Ports, OwnPort

outports
A list of audio output Ports.

New ports can be created and added to this list with the register() method. When
unregister() is called on one of the items in this list, this port is removed from the list. The
clear() method can be used to unregister all audio output ports at once.

See also:

Ports, OwnPort

midi_inports
A list of MIDI input Ports.

New MIDI ports can be created and added to this list with the register() method. When
unregister() is called on one of the items in this list, this port is removed from the list. The
clear() method can be used to unregister all MIDI input ports at once.

See also:

Ports, OwnMidiPort

midi_outports
A list of MIDI output Ports.

New MIDI ports can be created and added to this list with the register() method. When
unregister() is called on one of the items in this list, this port is removed from the list. The
clear() method can be used to unregister all MIDI output ports at once.

See also:

Ports, OwnMidiPort

owns(port)
Check if a given port belongs to self.

Parameters port (str or Port) – Full port name or Port, MidiPort, OwnPort or
OwnMidiPort object.

activate()
Activate JACK client.

Tell the JACK server that the program is ready to start processing audio.

deactivate(ignore_errors=True)
De-activate JACK client.

Tell the JACK server to remove self from the process graph. Also, disconnect all ports belonging to it,
since inactive clients have no port connections.

cpu_load()
Return the current CPU load estimated by JACK.

This is a running average of the time it takes to execute a full process cycle for all clients as a percent-
age of the real time available per cycle determined by the blocksize and samplerate.

close(ignore_errors=True)
Close the JACK client.

connect(source, destination)
Establish a connection between two ports.

When a connection exists, data written to the source port will be available to be read at the destination
port.

The port types must be identical.

Parameters

• source (str or Port) – One end of the connection. Must be an output port.

• destination (str or Port) – The other end of the connection. Must be an input port.

disconnect(source, destination)
Remove a connection between two ports.

Parameters source, destination (str or Port) – See connect().

transport_start()
Start JACK transport.

transport_stop()
Stop JACK transport.

transport_locate(frame)
Reposition the JACK transport to a new frame number.

Parameters frame (int) – Frame number.

set_freewheel(onoff)
Start/Stop JACK’s “freewheel” mode.

When in “freewheel” mode, JACK no longer waits for any external event to begin the start of the next
process cycle.

As a result, freewheel mode causes “faster than realtime” execution of a JACK graph. If possessed,
real-time scheduling is dropped when entering freewheel mode, and if appropriate it is reacquired
when stopping.

IMPORTANT: on systems using capabilities to provide real-time scheduling (i.e. Linux kernel 2.4), if
onoff is zero, this function must be called from the thread that originally called activate(). This
restriction does not apply to other systems (e.g. Linux kernel 2.6 or OS X).

Parameters onoff (bool) – If True, freewheel mode starts. Otherwise freewheel mode
ends.

See also:

set_freewheel_callback()

set_shutdown_callback(callback, userdata=None)
Register shutdown callback.

Register a function (and optional argument) to be called if and when the JACK server shuts down the
client thread. The function must be written as if it were an asynchonrous POSIX signal handler — use
only async-safe functions, and remember that it is executed from another thread. A typical function

might set a flag or write to a pipe so that the rest of the application knows that the JACK client thread
has shut down.

Note: clients do not need to call this. It exists only to help more complex clients understand what is
going on. It should be called before activate().

Note: application should typically signal another thread to correctly finish cleanup, that is by call-
ing close() (since close() cannot be called directly in the context of the thread that calls the
shutdown callback).

Parameters

• callback (callable) – User-supplied function that is called whenever the JACK daemon
is shutdown. It must have this signature:

callback(status:Status, reason:str, userdata) -> None

The argument status is of type jack.Status.

Note that after server shutdown, self is not deallocated by libjack, the application is
responsible to properly use close() to release client ressources.

Warning: close() cannot be safely used inside the shutdown callback and has
to be called outside of the callback context.

• userdata (anything) – This will be passed as third argument when callback is called.

set_process_callback(callback, userdata=None)
Register process callback.

Tell the JACK server to call callback whenever there is work be done, passing userdata as the second
argument.

The code in the supplied function must be suitable for real-time execution. That means that it cannot
call functions that might block for a long time. This includes malloc, free, printf, pthread_mutex_lock,
sleep, wait, poll, select, pthread_join, pthread_cond_wait, etc, etc.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called by the engine anytime there
is work to be done. It must have this signature:

callback(frames:int, userdata) -> int

The argument frames specifies the number of frames that have to be processed in the
current audio block. It will be the same number as blocksize and it will be a power
of two. The callback must return zero on success (if callback shall be called again for
the next audio block) and non-zero on error (if callback shall not be called again). You
can use CALL_AGAIN and STOP_CALLING, respectively.

• userdata (anything) – This will be passed as second argument whenever callback is
called.

set_freewheel_callback(callback, userdata=None)
Register freewheel callback.

Tell the JACK server to call callback whenever we enter or leave “freewheel” mode, passing userdata
as the second argument. The first argument to the callback will be True if JACK is entering freewheel
mode, and False otherwise.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called whenever jackd starts or
stops freewheeling. It must have this signature:

callback(starting:bool, userdata) -> None

• userdata (anything) – This will be passed as second argument whenever callback is
called.

See also:

set_freewheel()

set_blocksize_callback(callback, userdata=None)
Register blocksize callback.

Tell JACK to call callback whenever the size of the the buffer that will be passed to the process
callback is about to change. Clients that depend on knowing the buffer size must supply a callback
before activating themselves.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is invoked whenever the JACK en-
gine buffer size changes. It must have this signature:

callback(blocksize:int, userdata) -> int

The callback must return zero on success and non-zero on error. You can use
SUCCESS and FAILURE, respectively.

Although this function is called in the JACK process thread, the normal process cycle
is suspended during its operation, causing a gap in the audio flow. So, the callback
can allocate storage, touch memory not previously referenced, and perform other op-
erations that are not realtime safe.

• userdata (anything) – This will be passed as second argument whenever callback is
called.

set_samplerate_callback(callback, userdata=None)
Register samplerate callback.

Tell the JACK server to call callback whenever the system sample rate changes.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called when the engine sample
rate changes. It must have this signature:

callback(samplerate:int, userdata) -> int

The argument samplerate is the new engine sample rate. The callback must return zero
on success and non-zero on error. You can use SUCCESS and FAILURE, respectively.

• userdata (anything) – This will be passed as second argument whenever callback is
called.

set_client_registration_callback(callback, userdata=None)
Register client registration callback.

Tell the JACK server to call callback whenever a client is registered or unregistered, passing userdata
as a parameter.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called whenever a client is regis-
tered or unregistered. It must have this signature:

callback(name:str, register:bool, userdata) -> None

The first argument contains the client name, the second argument is True if the client
is being registered and False if the client is being unregistered.

• userdata (anything) – This will be passed as third argument whenever callback is
called.

set_port_registration_callback(callback, userdata=None)
Register port registration callback.

Tell the JACK server to call callback whenever a port is registered or unregistered, passing userdata
as a parameter.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function function that is called whenever a port is
registered or unregistered. It must have this signature:

callback(port:Port, register:bool, userdata) -> None

The first argument is a Port, MidiPort, OwnPort or OwnMidiPort object, the
second argument is True if the port is being registered, False if the port is being
unregistered.

• userdata (anything) – This will be passed as third argument whenever callback is
called.

set_port_connect_callback(callback, userdata=None)
Register port connect callback.

Tell the JACK server to call callback whenever a port is connected or disconnected, passing userdata
as a parameter.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called whenever a port is con-
nected or disconnected. It must have this signature:

callback(a:Port, b:Port, connect:bool, userdata) -> None

The first and second arguments contain Port, MidiPort, OwnPort or
OwnMidiPort objects of the ports which are connected or disconnected. The third
argument is True if the ports were connected and False if the ports were discon-
nected.

• userdata (anything) – This will be passed as fourth argument whenever callback is
called.

set_port_rename_callback(callback, userdata=None)
Register port rename callback.

Tell the JACK server to call callback whenever a port is renamed, passing userdata as a parameter.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called whenever the port name has
been changed. It must have this signature:

callback(port:Port, old:str, new:str, userdata) -> int

The first argument is the port that has been renamed (a Port, MidiPort, OwnPort
or OwnMidiPort object); the second and third argument is the old and new name,
respectively. The callback must return zero on success and non-zero on error. You can
use SUCCESS and FAILURE, respectively.

• userdata (anything) – This will be passed as fourth argument whenever callback is
called.

set_graph_order_callback(callback, userdata=None)
Register graph order callback.

Tell the JACK server to call callback whenever the processing graph is reordered, passing userdata as
a parameter.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called whenever the processing
graph is reordered. It must have this signature:

callback(userdata) -> int

The callback must return zero on success and non-zero on error. You can use
SUCCESS and FAILURE, respectively.

• userdata (anything) – This will be passed as argument whenever callback is called.

set_xrun_callback(callback, userdata=None)
Register xrun callback.

Tell the JACK server to call callback whenever there is an xrun, passing userdata as a parameter.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: this function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called whenever an xrun has oc-
cured. It must have this signature:

callback(userdata) -> int

The callback must return zero on success and non-zero on error. You can use
SUCCESS and FAILURE, respectively.

• userdata (anything) – This will be passed as argument whenever callback is called.

See also:

xrun_delayed_usecs

get_uuid_for_client_name(name)
Get the session ID for a client name.

The session manager needs this to reassociate a client name to the session ID.

get_client_name_by_uuid(uuid)
Get the client name for a session ID.

In order to snapshot the graph connections, the session manager needs to map session IDs to client
names.

get_port_by_name(name)
Get port by name.

Given a full port name, this returns a Port, MidiPort, OwnPort or OwnMidiPort object.

get_all_connections(port)
Return a list of ports which the given port is connected to.

This differs from OwnPort.connections (also available on OwnMidiPort) in two important
respects:

1.You may not call this function from code that is executed in response to a JACK event. For
example, you cannot use it in a graph order callback.

2.You need not be the owner of the port to get information about its connections.

get_ports(name_pattern=’‘, is_audio=False, is_midi=False, is_input=False, is_output=False,
is_physical=False, can_monitor=False, is_terminal=False)

Return a list of selected ports.

Parameters

• name_pattern (str) – A regular expression used to select ports by name. If empty, no
selection based on name will be carried out.

• is_audio, is_midi (bool) – Select audio/MIDI ports. If neither of them is True, both
types of ports are selected.

• is_input, is_output, is_physical, can_monitor, is_terminal (bool) – Select ports by
their flags. If none of them are True, no selection based on flags will be carried out.

Returns list of Port/MidiPort/OwnPort/OwnMidiPort – All ports that satisfy the given con-
ditions.

class jack.Port(port_ptr)
A JACK audio port.

This class cannot be instantiated directly. Instead, instances of this class
are returned from Client.get_port_by_name(), Client.get_ports(),
Client.get_all_connections() and OwnPort.connections.
In addition, instances of this class are available in the callbacks
which are set with Client.set_port_registration_callback(),
Client.set_port_connect_callback() or Client.set_port_rename_callback().

Note, however, that if the used Client owns the respective port, instances of OwnPort (instead of Port)
will be created. In case of MIDI ports, instances of MidiPort or OwnMidiPort are created.

Besides being the type of non-owned JACK audio ports, this class also serves as base class for all other port
classes (OwnPort, MidiPort and OwnMidiPort).

New JACK audio/MIDI ports can be created with the register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

name
Full name of the JACK port (read-only).

shortname
Short name of the JACK port, not including “client_name – ”.

Must be unique among all ports owned by a client.

May be modified at any time. If the resulting full name (including the “client_name:” prefix) is longer
than port_name_size(), it will be truncated.

uuid
The UUID of the JACK port.

is_audio
This is always True.

is_midi
This is always False.

is_input
Can the port receive data?

is_output
Can data be read from this port?

is_physical
Does it correspond to some kind of physical I/O connector?

can_monitor
Does a call to request_monitor() make sense?

is_terminal
Is the data consumed/generated?

request_monitor(onoff)
Set input monitoring.

If can_monitor is True, turn input monitoring on or off. Otherwise, do nothing.

Parameters onoff (bool) – If True, switch monitoring on; if False, switch it off.

class jack.MidiPort(port_ptr)
A JACK MIDI port.

This class is derived from Port and has exactly the same attributes and methods.

New JACK audio/MIDI ports can be created with the register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

See also:

Port, OwnMidiPort

is_audio
This is always False.

is_midi
This is always True.

class jack.OwnPort(port_ptr, client)
A JACK audio port owned by a Client object.

This class is derived from Port. OwnPort objects can do everything that Port objects can, plus a lot
more.

This class cannot be instantiated directly. Instead, instances of this class
are returned from Client.get_port_by_name(), Client.get_ports(),
Client.get_all_connections() and connections. In addition, instances of this class
are available in the callbacks which are set with Client.set_port_registration_callback(),
Client.set_port_connect_callback() or Client.set_port_rename_callback().

Note, however, that if the used Client doesn’t own the respective port, instances of Port (instead of
OwnPort) will be created. In case of MIDI ports, instances of MidiPort or OwnMidiPort are created.

New JACK audio/MIDI ports can be created with the register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

number_of_connections
Number of connections to or from port.

connections
List of ports which the port is connected to.

is_connected_to(port)
Am I directly connected to port?

Parameters port (str or Port) – Full port name or port object.

connect(port)
Connect to given port:

Parameters port (str or Port) – Full port name or port object.

See also:

Client.connect()

disconnect(other=None)
Disconnect this port.

Parameters other (str or Port) – Port to disconnect from. By default, disconnect from all
connected ports.

unregister()
Unregister port.

Remove the port from the client, disconnecting any existing connections. This also re-
moves the port from Client.inports, Client.outports, Client.midi_inports or
Client.midi_outports.

get_buffer()
Get buffer for audio data.

This returns a buffer holding the memory area associated with the specified port. For an output port,
it will be a memory area that can be written to; for an input port, it will be an area containing the data
from the port’s connection(s), or zero-filled. If there are multiple inbound connections, the data will
be mixed appropriately.

Caching output ports is DEPRECATED in JACK 2.0, due to some new optimization (like “pipelin-
ing”). Port buffers have to be retrieved in each callback for proper functioning.

get_array()
Get audio buffer as NumPy array.

See also:

get_buffer()

class jack.OwnMidiPort(*args, **kwargs)
A JACK MIDI port owned by a Client object.

This class is derived from OwnPort and MidiPort, which are themselves derived from Port. It has
the same attributes and methods as OwnPort, but get_buffer() and get_array() are disabled.
Instead, it has methods for sending and receiving MIDI events (to be used from within the process callback
– see Client.set_process_callback()).

New JACK audio/MIDI ports can be created with the register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

get_buffer()
Not available for MIDI ports.

get_array()
Not available for MIDI ports.

max_event_size
Get the size of the largest event that can be stored by the port.

This returns the current space available, taking into account events already stored in the port.

lost_midi_events
Get the number of events that could not be written to the port.

This being a non-zero value implies that the port is full. Currently the only way this can happen is if
events are lost on port mixdown.

incoming_midi_events()
Return generator for incoming MIDI events.

JACK MIDI is normalised, the MIDI events yielded by this generator are guaranteed to be complete
MIDI events (the status byte will always be present, and no realtime events will be interspersed with
the events).

Yields

• time (int) – Time (in samples) relative to the beginning of the current audio block.

• event (buffer) – The actual MIDI event data.

clear_buffer()
Clear an event buffer.

This should be called at the beginning of each process cycle before calling
reserve_midi_event() or write_midi_event(). This function may not be called
on an input port.

write_midi_event(time, event)
Create an outgoing MIDI event.

Clients must write normalised MIDI data to the port - no running status and no (one-byte) realtime
messages interspersed with other messages (realtime messages are fine when they occur on their own,
like other messages).

Events must be written in order, sorted by their sample offsets. JACK will not sort the events for you,
and will refuse to store out-of-order events.

Parameters

• time (int) – Time (in samples) relative to the beginning of the current audio block.

• event (bytes or buffer or sequence of int) – The actual MIDI event data.

Note: Buffer objects are only supported for CFFI >= 0.9.

Raises JackError – If MIDI event couldn’t be written.

reserve_midi_event(time, size)
Get a buffer where an outgoing MIDI event can be written to.

Clients must write normalised MIDI data to the port - no running status and no (one-byte) realtime
messages interspersed with other messages (realtime messages are fine when they occur on their own,
like other messages).

Events must be written in order, sorted by their sample offsets. JACK will not sort the events for you,
and will refuse to store out-of-order events.

Parameters

• time (int) – Time (in samples) relative to the beginning of the current audio block.

• size (int) – Number of bytes to reserve.

Returns buffer – A buffer object where MIDI data bytes can be written to. If no space could
be reserved, an empty buffer is returned.

class jack.Ports(client, porttype, flag)
A list of input/output ports.

This class is not meant to be instantiated directly. It is only used as Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

The ports can be accessed by indexing or by iteration.

New ports can be added with register(), existing ports can be removed by calling their
unregister() method.

register(shortname, is_terminal=False, is_physical=False)
Create a new input/output port.

The new OwnPort or OwnMidiPort object is automatically added to Client.inports,
Client.outports, Client.midi_inports or Client.midi_outports.

Parameters

• shortname (str) – Each port has a short name. The port’s full name contains the
name of the client concatenated with a colon (:) followed by its short name. The
port_name_size() is the maximum length of this full name. Exceeding that will
cause the port registration to fail.

The port name must be unique among all ports owned by this client. If the name is not
unique, the registration will fail.

• is_terminal (bool) – For an input port: If True, the data received by the port will not
be passed on or made available at any other port. For an output port: If True, the data
available at the port does not originate from any other port

Audio synthesizers, I/O hardware interface clients, HDR systems are examples of
clients that would set this flag for their ports.

• is_physical (bool) – If True the port corresponds to some kind of physical I/O con-
nector.

Returns Port – A new OwnPort or OwnMidiPort instance.

clear()
Unregister all ports in the list.

See also:

OwnPort.unregister()

class jack.Status(statuscode)
Representation of the JACK status bits.

failure
Overall operation failed.

invalid_option
The operation contained an invalid or unsupported option.

name_not_unique
The desired client name was not unique.

With the use_exact_name option of Client, this situation is fatal. Otherwise, the name is modified
by appending a dash and a two-digit number in the range “-01” to “-99”. Client.name will return
the exact string that was used. If the specified name plus these extra characters would be too long, the
open fails instead.

server_started
The JACK server was started for this Client.

Otherwise, it was running already.

server_failed
Unable to connect to the JACK server.

server_error
Communication error with the JACK server.

no_such_client
Requested client does not exist.

load_failure
Unable to load internal client.

init_failure
Unable to initialize client.

shm_failure
Unable to access shared memory.

version_error
Client’s protocol version does not match.

backend_error
Backend error.

client_zombie
Client zombified failure.

exception jack.JackError
Exception for all kinds of JACK-related errors.

jack.version()
Get tuple of major/minor/micro/protocol version.

jack.version_string()
Get human-readable JACK version.

jack.client_name_size()
Return the maximum number of characters in a JACK client name.

This includes the final NULL character. This value is a constant.

jack.port_name_size()
Maximum length of port names.

The maximum number of characters in a full JACK port name including the final NULL character. This
value is a constant.

A port’s full name contains the owning client name concatenated with a colon (:) followed by its short name
and a NULL character.

jack.set_error_function(callback=None)
Set the callback for error message display.

Set it to None to restore the default error callback function (which prints the error message plus a newline
to stderr). The callback function must have this signature:

callback(message:str) -> None

jack.set_info_function(callback=None)
Set the callback for info message display.

Set it to None to restore default info callback function (which prints the info message plus a newline to
stderr). The callback function must have this signature:

callback(message:str) -> None

jack.client_pid(name)
Return PID of a JACK client.

Parameters name (str) – Name of the JACK client whose PID shall be returned.

Returns int – PID of name. If not available, 0 will be returned.

5 Version History

Version 0.2.0 (2015-02-23):

• MIDI support (jack.MidiPort, jack.OwnMidiPort, jack.Client.midi_inports,
jack.Client.midi_outports, ...)

• ignore errors in jack.Client.deactivate() by default, can be overridden

• optional argument to jack.OwnPort.disconnect()

• several examples (chatty_client.py, thru_client.py, midi_monitor.py and
midi_chords.py)

• jack.Port.is_physical, courtesy of Alexandru Stan

• jack.Status class

• some bug-fixes and refactorings, some documentation improvements

Version 0.1.0 (2014-12-15): Initial release

	Requirements
	Installation
	Usage
	API Documentation
	Version History

