

JACK Audio Connection Kit (JACK) Client for Python

This Python module provides bindings for the JACK [http://jackaudio.org/] library.

	Documentation:

	http://jackclient-python.readthedocs.io/

	Code:

	https://github.com/spatialaudio/jackclient-python/

	License:

	MIT – see the file LICENSE for details.

[image: _images/JACK-Client.svg]
 [https://pypi.python.org/pypi/JACK-Client/][image: _images/python:jack-client.svg]
 [https://repology.org/metapackage/python:jack-client]
Requirements

	Python:

	Of course, you’ll need Python [https://www.python.org/].
Any version where CFFI (see below) is supported should work.
If you don’t have Python installed yet, you should get one of the
distributions which already include CFFI and NumPy (and many other useful
things), e.g. Anaconda [https://www.anaconda.com/download/] or WinPython [http://winpython.github.io/].

	pip/setuptools:

	Those are needed for the installation of the Python module and its
dependencies. Most systems will have these installed already, but if not,
you should install it with your package manager or you can download and
install pip and setuptools as described on the pip installation [https://pip.pypa.io/en/latest/installing/]
page.
If you happen to have pip but not setuptools, use this command:

python3 -m pip install setuptools --user

To upgrade to a newer version of an already installed package (including
pip itself), use the --upgrade flag.

	CFFI:

	The C Foreign Function Interface for Python [http://cffi.readthedocs.org/] is used to access the C-API
of the JACK library from within Python. It supports CPython 2.6, 2.7, 3.x;
and is distributed with PyPy [http://pypy.org/].
If it’s not installed already, you should install it with your package
manager (the package might be called python3-cffi or similar), or you can
get it with:

python3 -m pip install cffi --user

	JACK library:

	The JACK [http://jackaudio.org/] library must be installed on your system (and CFFI must be able
to find it). Again, you should use your package manager to install it.
Make sure you install the JACK daemon (called jackd). This will also
install the JACK library package.
If you don’t have a package manager, you can try one of the binary installers
from the JACK download page [http://jackaudio.org/downloads/].
If you prefer, you can of course also download the sources and compile
everything locally.

	NumPy (optional):

	NumPy [http://www.numpy.org/] is only needed if you want to access the input and output buffers in
the process callback as NumPy arrays.
The only place where NumPy is needed is jack.OwnPort.get_array().
If you need NumPy, you should install it with your package manager or use a
Python distribution that already includes NumPy (see above).
You can also install NumPy with pip, but depending on your platform, this
might require a compiler and several additional libraries:

python3 -m pip install NumPy --user

Installation

Once you have installed the above-mentioned dependencies, you can use pip
to download and install the latest release with a single command:

python3 -m pip install JACK-Client --user

If you want to install it system-wide for all users (assuming you have the
necessary rights), you can just drop the --user option.
If you have installed the module already, you can use the --upgrade flag to
get the newest release.

To un-install, use:

python3 -m pip uninstall JACK-Client

Usage

First, import the module:

>>> import jack

Then, you most likely want to create a new jack.Client:

>>> client = jack.Client('MyGreatClient')

You probably want to create some audio input and output ports, too:

>>> client.inports.register('input_1')
jack.OwnPort('MyGreatClient:input_1')
>>> client.outports.register('output_1')
jack.OwnPort('MyGreatClient:output_1')

As you can see, these functions return the newly created port.
If you want, you can save it for later:

>>> in2 = client.inports.register('input_2')
>>> out2 = client.outports.register('output_2')

To see what you can do with the returned objects, have a look at the
documentation of the class jack.OwnPort.

In case you forgot, you should remind yourself about the ports you just created:

>>> client.inports
[jack.OwnPort('MyGreatClient:input_1'), jack.OwnPort('MyGreatClient:input_2')]
>>> client.outports
[jack.OwnPort('MyGreatClient:output_1'), jack.OwnPort('MyGreatClient:output_2')]

Have a look at the documentation of the class jack.Ports to get more detailed
information about these lists of ports.

If you have selected an appropriate driver in your JACK settings, you can also
create MIDI ports:

>>> client.midi_inports.register('midi_in')
jack.OwnMidiPort('MyGreatClient:midi_in')
>>> client.midi_outports.register('midi_out')
jack.OwnMidiPort('MyGreatClient:midi_out')

You can check what other JACK ports are available (your output may be
different):

>>> client.get_ports()
[jack.Port('system:capture_1'),
 jack.Port('system:capture_2'),
 jack.Port('system:playback_1'),
 jack.Port('system:playback_2'),
 jack.MidiPort('system:midi_capture_1'),
 jack.MidiPort('system:midi_playback_1'),
 jack.OwnPort('MyGreatClient:input_1'),
 jack.OwnPort('MyGreatClient:output_1'),
 jack.OwnPort('MyGreatClient:input_2'),
 jack.OwnPort('MyGreatClient:output_2'),
 jack.OwnMidiPort('MyGreatClient:midi_in'),
 jack.OwnMidiPort('MyGreatClient:midi_out')]

Note that the ports you created yourself are of type jack.OwnPort and
jack.OwnMidiPort, while other ports are merely of type jack.Port and
jack.MidiPort, respectively.

You can also be more specific when looking for ports:

>>> client.get_ports(is_audio=True, is_output=True, is_physical=True)
[jack.Port('system:capture_1'), jack.Port('system:capture_2')]

You can even use regular expressions to search for ports:

>>> client.get_ports('Great.*2$')
[jack.OwnPort('MyGreatClient:input_2'), jack.OwnPort('MyGreatClient:output_2')]

If you want, you can also set all kinds of callback functions for your client.
For details see the documentation for the class jack.Client and the example
applications in the examples/ directory.

Once you are ready to run, you should activate your client:

>>> client.activate()

As soon as the client is activated, you can make connections (this isn’t
possible before activating the client):

>>> client.connect('system:capture_1', 'MyGreatClient:input_1')
>>> client.connect('MyGreatClient:output_1', 'system:playback_1')

You can also use the port objects from before instead of port names:

>>> client.connect(out2, 'system:playback_2')
>>> in2.connect('system:capture_2')

Use jack.Client.get_all_connections() to find out which other ports are
connected to a given port.
If you own the port, you can also use jack.OwnPort.connections.

>>> client.get_all_connections('system:playback_1')
[jack.OwnPort('MyGreatClient:output_1')]
>>> out2.connections
[jack.Port('system:playback_2')]

Of course you can also disconnect ports, there are again several possibilities:

>>> client.disconnect('system:capture_1', 'MyGreatClient:input_1')
>>> client.disconnect(out2, 'system:playback_2')
>>> in2.disconnect() # disconnect all connections with in2

If you don’t need your ports anymore, you can un-register them:

>>> in2.unregister()
>>> client.outports.clear() # unregister all audio output ports

Finally, you can de-activate your JACK client and close it:

>>> client.deactivate()
>>> client.close()

More Examples

For more examples, have a look at the Example Programs.

Contributing

If you find bugs, errors, omissions or other things that need improvement,
please create an issue or a pull request at
https://github.com/spatialaudio/jackclient-python.
Contributions are always welcome!

Instead of pip-installing the latest release from PyPI, you should get the
newest development version from Github [https://github.com/spatialaudio/jackclient-python/]:

git clone https://github.com/spatialaudio/jackclient-python.git
cd jackclient-python
python3 -m pip install --user -e .

… where -e stands for --editable.
This way, your installation always stays up-to-date, even if you pull new
changes from the Github repository.

Note

Whenever the file jack_build.py changes (either because you edited it or
it was updated by pulling from Github or switching branches), you have to
run the last command again.

If you make changes to the documentation, you can locally re-create the HTML
pages using Sphinx [http://sphinx-doc.org/].
You can install it and a few other necessary packages with:

python3 -m pip install -r doc/requirements.txt --user

To create the HTML pages, use:

python3 setup.py build_sphinx

The generated files will be available in the directory build/sphinx/html/.

There are no proper tests (yet?), but the code examples from the README file
can be verified with pytest [https://pytest.org/].
If you haven’t installed it already, you can install it with:

python3 -m pip install pytest ---user

As soon as pytest [https://pytest.org/] is installed, you can run the (rudimentary) tests with:

python3 -m pytest

API Documentation

JACK Client for Python.

http://jackclient-python.readthedocs.io/

	
jack.STOPPED = 0

	Transport halted.

	
jack.ROLLING = 1

	Transport playing.

	
jack.STARTING = 3

	Waiting for sync ready.

	
jack.NETSTARTING = 4

	Waiting for sync ready on the network.

	
class jack.Client(name, use_exact_name=False, no_start_server=False, servername=None, session_id=None)

	Create a new JACK client.

A client object is a context manager, i.e. it can be used in a
with statement to automatically call activate() in the
beginning of the statement and deactivate() and close() on
exit.

	Parameters

	name (str) – The desired client name of at most client_name_size()
characters. The name scope is local to each server.
Unless forbidden by the use_exact_name option, the server
will modify this name to create a unique variant, if needed.

	Other Parameters

	
	use_exact_name (bool) – Whether an error should be raised if name is not unique.
See Status.name_not_unique.

	no_start_server (bool) – Do not automatically start the JACK server when it is not
already running. This option is always selected if
JACK_NO_START_SERVER is defined in the calling process
environment.

	servername (str) – Selects from among several possible concurrent server
instances.
Server names are unique to each user. If unspecified, use
'default' unless JACK_DEFAULT_SERVER is defined in
the process environment.

	session_id (str) – Pass a SessionID Token. This allows the sessionmanager to
identify the client again.

	
name

	The name of the JACK client (read-only).

	
samplerate

	The sample rate of the JACK system (read-only).

	
blocksize

	The JACK block size (must be a power of two).

The current maximum size that will ever be passed to the process
callback. It should only be queried before activate() has
been called. This size may change, clients that depend on it
must register a callback with set_blocksize_callback() so they
will be notified if it does.

Changing the blocksize stops the JACK engine process cycle, then
calls all registered callback functions (see
set_blocksize_callback()) before restarting the process
cycle. This will cause a gap in the audio flow, so it should
only be done at appropriate stopping points.

	
status

	JACK client status. See Status.

	
realtime

	Whether JACK is running with -R (--realtime).

	
frames_since_cycle_start

	Time since start of audio block.

The estimated time in frames that has passed since the JACK
server began the current process cycle.

	
frame_time

	The estimated current time in frames.

This is intended for use in other threads (not the process
callback). The return value can be compared with the value of
last_frame_time to relate time in other threads to JACK time.

	
last_frame_time

	The precise time at the start of the current process cycle.

This may only be used from the process callback (see
set_process_callback()), and can be used to interpret
timestamps generated by frame_time in other threads with
respect to the current process cycle.

This is the only jack time function that returns exact time:
when used during the process callback it always returns the same
value (until the next process callback, where it will return
that value + blocksize, etc). The return value is guaranteed
to be monotonic and linear in this fashion unless an xrun occurs
(see set_xrun_callback()). If an xrun occurs, clients must
check this value again, as time may have advanced in a
non-linear way (e.g. cycles may have been skipped).

	
inports

	A list of audio input Ports.

New ports can be created and added to this list with
inports.register().
When unregister() is called on one of the items
in this list, this port is removed from the list.
inports.clear() can be used to unregister all
audio input ports at once.

See also

Ports, OwnPort

	
outports

	A list of audio output Ports.

New ports can be created and added to this list with
outports.register().
When unregister() is called on one of the items
in this list, this port is removed from the list.
outports.clear() can be used to unregister all
audio output ports at once.

See also

Ports, OwnPort

	
midi_inports

	A list of MIDI input Ports.

New MIDI ports can be created and added to this list with
midi_inports.register().
When unregister() is called on one of the items
in this list, this port is removed from the list.
midi_inports.clear() can be used to unregister
all MIDI input ports at once.

See also

Ports, OwnMidiPort

	
midi_outports

	A list of MIDI output Ports.

New MIDI ports can be created and added to this list with
midi_outports.register().
When unregister() is called on one of the items
in this list, this port is removed from the list.
midi_outports.clear() can be used to unregister
all MIDI output ports at once.

See also

Ports, OwnMidiPort

	
owns(port)

	Check if a given port belongs to self.

	Parameters

	port (str or Port) – Full port name or Port, MidiPort, OwnPort or
OwnMidiPort object.

	
activate()

	Activate JACK client.

Tell the JACK server that the program is ready to start
processing audio.

	
deactivate(ignore_errors=True)

	De-activate JACK client.

Tell the JACK server to remove self from the process graph.
Also, disconnect all ports belonging to it, since inactive
clients have no port connections.

	
cpu_load()

	Return the current CPU load estimated by JACK.

This is a running average of the time it takes to execute a full
process cycle for all clients as a percentage of the real time
available per cycle determined by blocksize and samplerate.

	
close(ignore_errors=True)

	Close the JACK client.

	
connect(source, destination)

	Establish a connection between two ports.

When a connection exists, data written to the source port will
be available to be read at the destination port.

Audio ports can obviously not be connected with MIDI ports.

	Parameters

	
	source (str or Port) – One end of the connection. Must be an output port.

	destination (str or Port) – The other end of the connection. Must be an input port.

See also

OwnPort.connect(), disconnect()

	
disconnect(source, destination)

	Remove a connection between two ports.

	Parameters

	source, destination (str or Port) – See connect().

	
transport_start()

	Start JACK transport.

	
transport_stop()

	Stop JACK transport.

	
transport_state

	JACK transport state.

This is one of STOPPED, ROLLING, STARTING, NETSTARTING.

See also

transport_query

	
transport_frame

	Get/set current JACK transport frame.

Return an estimate of the current transport frame, including any
time elapsed since the last transport positional update.
Assigning a frame number repositions the JACK transport.

	
transport_locate(frame)

	
Deprecated since version 0.4.1: Use transport_frame instead

	
transport_query()

	Query the current transport state and position.

This is a convenience function that does the same as
transport_query_struct(), but it only returns the valid fields
in an easy-to-use dict.

	Returns

	
	state (TransportState) – The transport state can take following values:
STOPPED, ROLLING, STARTING and NETSTARTING.

	position (dict) – A dictionary containing only the valid fields of the
structure returned by transport_query_struct().

See also

transport_state, transport_query_struct()

	
transport_query_struct()

	Query the current transport state and position.

This function is realtime-safe, and can be called from any
thread. If called from the process thread, the returned
position corresponds to the first frame of the current cycle and
the state returned is valid for the entire cycle.

	Returns

	
	state (int) – The transport state can take following values: STOPPED,
ROLLING, STARTING and NETSTARTING.

	position (jack_position_t) – See the JACK transport documentation [http://jackaudio.org/files/docs/html/structjack__position__t.html] for the available
fields.

See also

transport_query(), transport_reposition_struct()

	
transport_reposition_struct(position)

	Request a new transport position.

May be called at any time by any client. The new position takes
effect in two process cycles. If there are slow-sync clients
and the transport is already rolling, it will enter the
STARTING state and begin invoking their sync callbacks
(see jack_set_sync_callback() [http://jackaudio.org/files/docs/html/group__TransportControl.html]) until ready.
This function is realtime-safe.

	Parameters

	position (jack_position_t) – Requested new transport position. This is the same
structure as returned by transport_query_struct().

See also

transport_query_struct(), transport_locate()

	
set_freewheel(onoff)

	Start/Stop JACK’s “freewheel” mode.

When in “freewheel” mode, JACK no longer waits for any external
event to begin the start of the next process cycle.

As a result, freewheel mode causes “faster than realtime”
execution of a JACK graph. If possessed, real-time scheduling is
dropped when entering freewheel mode, and if appropriate it is
reacquired when stopping.

IMPORTANT: on systems using capabilities to provide real-time
scheduling (i.e. Linux kernel 2.4), if onoff is zero, this
function must be called from the thread that originally called
activate(). This restriction does not apply to other systems
(e.g. Linux kernel 2.6 or OS X).

	Parameters

	onoff (bool) – If True, freewheel mode starts. Otherwise freewheel mode
ends.

See also

set_freewheel_callback()

	
set_shutdown_callback(callback)

	Register shutdown callback.

Register a function (and optional argument) to be called if and
when the JACK server shuts down the client thread.
The function must be written as if it were an asynchonrous POSIX
signal handler – use only async-safe functions, and remember
that it is executed from another thread.
A typical function might set a flag or write to a pipe so that
the rest of the application knows that the JACK client thread
has shut down.

Note

Clients do not need to call this. It exists only to
help more complex clients understand what is going on. It
should be called before activate().

	Parameters

	callback (callable) – User-supplied function that is called whenever the JACK
daemon is shutdown. It must have this signature:

callback(status: Status, reason: str) -> None

The argument status is of type jack.Status.

Note

The callback should typically signal another
thread to correctly finish cleanup by calling close()
(since it cannot be called directly in the context of the
thread that calls the shutdown callback).

After server shutdown, the client is not deallocated by
JACK, the user (that’s you!) is responsible to properly
use close() to release client ressources.
Alternatively, the Client object can be used as a
context manager in a with statement, which takes care
of activating, deactivating and closing the client
automatically.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

	
set_process_callback(callback)

	Register process callback.

Tell the JACK server to call callback whenever there is work
be done.

The code in the supplied function must be suitable for real-time
execution. That means that it cannot call functions that might
block for a long time. This includes malloc, free, printf,
pthread_mutex_lock, sleep, wait, poll, select, pthread_join,
pthread_cond_wait, etc, etc.

Warning

Most Python interpreters use a global interpreter
lock (GIL) [https://en.wikipedia.org/wiki/Global_Interpreter_Lock], which violates the above real-time
requirement. Furthermore, Python’s garbage collector [https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)]
might become active at an inconvenient time and block the
process callback for some time.

Because of this, Python is not really suitable for real-time
processing. If you want to implement a reliable real-time
audio/MIDI application, you should use a different
programming language, such as C or C++.

If you can live with some random audio drop-outs now and
then, feel free to continue using Python!

Note

This function cannot be called while the client is
activated (after activate() has been called).

	Parameters

	callback (callable) – User-supplied function that is called by the engine anytime
there is work to be done. It must have this signature:

callback(frames: int) -> None

The argument frames specifies the number of frames that
have to be processed in the current audio block.
It will be the same number as blocksize and it will be a
power of two.

As long as the client is active, the callback will be
called once in each process cycle. However, if an exception
is raised inside of a callback, it will not be called
anymore. The exception CallbackExit can be used to
silently prevent further callback invocations, all other
exceptions will print an error message to stderr.

	
set_freewheel_callback(callback)

	Register freewheel callback.

Tell the JACK server to call callback whenever we enter or
leave “freewheel” mode.
The argument to the callback will be True if JACK is
entering freewheel mode, and False otherwise.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

	Parameters

	callback (callable) – User-supplied function that is called whenever JACK starts
or stops freewheeling. It must have this signature:

callback(starting: bool) -> None

The argument starting is True if we start to
freewheel, False otherwise.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

See also

set_freewheel()

	
set_blocksize_callback(callback)

	Register blocksize callback.

Tell JACK to call callback whenever the size of the the buffer
that will be passed to the process callback is about to change.
Clients that depend on knowing the buffer size must supply a
callback before activating themselves.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

	Parameters

	callback (callable) – User-supplied function that is invoked whenever the JACK
engine buffer size changes. It must have this signature:

callback(blocksize: int) -> None

The argument blocksize is the new buffer size.
The callback is supposed to raise CallbackExit on error.

Note

Although this function is called in the JACK
process thread, the normal process cycle is suspended
during its operation, causing a gap in the audio flow.
So, the callback can allocate storage, touch memory not
previously referenced, and perform other operations that
are not realtime safe.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

See also

blocksize

	
set_samplerate_callback(callback)

	Register samplerate callback.

Tell the JACK server to call callback whenever the system
sample rate changes.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

	Parameters

	callback (callable) – User-supplied function that is called when the engine sample
rate changes. It must have this signature:

callback(samplerate: int) -> None

The argument samplerate is the new engine sample rate.
The callback is supposed to raise CallbackExit on error.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

See also

samplerate

	
set_client_registration_callback(callback)

	Register client registration callback.

Tell the JACK server to call callback whenever a client is
registered or unregistered.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

	Parameters

	callback (callable) – User-supplied function that is called whenever a client is
registered or unregistered. It must have this signature:

callback(name: str, register: bool) -> None

The first argument contains the client name, the second
argument is True if the client is being registered and
False if the client is being unregistered.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

	
set_port_registration_callback(callback=None, only_available=True)

	Register port registration callback.

Tell the JACK server to call callback whenever a port is
registered or unregistered.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

Note

Due to JACK 1 behavior, it is not possible to get
the pointer to an unregistering JACK Port if it already
existed before activate() was called. This will cause
the callback not to be called if only_available is
True, or called with None as first argument (see
below).

To avoid this, call Client.get_ports() just after
activate(), allowing the module to store pointers to
already existing ports and always receive a Port
argument for this callback.

	Parameters

	
	callback (callable) – User-supplied function that is called whenever a port is
registered or unregistered. It must have this signature:

callback(port: Port, register: bool) -> None

The first argument is a Port, MidiPort, OwnPort or
OwnMidiPort object, the second argument is True if the
port is being registered, False if the port is being
unregistered.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

	only_available (bool, optional) – If True, the callback is not called if the port in
question is not available anymore (after another JACK client
has unregistered it).
If False, it is called nonetheless, but the first
argument of the callback will be None if the port is
not available anymore.

See also

Ports.register()

	
set_port_connect_callback(callback=None, only_available=True)

	Register port connect callback.

Tell the JACK server to call callback whenever a port is
connected or disconnected.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

Note

Due to JACK 1 behavior, it is not possible to get
the pointer to an unregistering JACK Port if it already
existed before activate() was called. This will cause
the callback not to be called if only_available is
True, or called with None as first argument (see
below).

To avoid this, call Client.get_ports() just after
activate(), allowing the module to store pointers to
already existing ports and always receive a Port
argument for this callback.

	Parameters

	
	callback (callable) – User-supplied function that is called whenever a port is
connected or disconnected. It must have this signature:

callback(a: Port, b: Port, connect: bool) -> None

The first and second arguments contain Port, MidiPort,
OwnPort or OwnMidiPort objects of the ports which are
connected or disconnected. The third argument is True
if the ports were connected and False if the ports were
disconnected.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

	only_available (bool, optional) – See set_port_registration_callback().
If False, the first and/or the second argument to the
callback may be None.

See also

Client.connect(), OwnPort.connect()

	
set_port_rename_callback(callback=None, only_available=True)

	Register port rename callback.

Tell the JACK server to call callback whenever a port is
renamed.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

	Parameters

	
	callback (callable) – User-supplied function that is called whenever the port name
has been changed. It must have this signature:

callback(port: Port, old: str, new: str) -> None

The first argument is the port that has been renamed (a
Port, MidiPort, OwnPort or OwnMidiPort object); the
second and third argument is the old and new name,
respectively. The callback is supposed to raise
CallbackExit on error.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

	only_available (bool, optional) – See set_port_registration_callback().

See also

Port.shortname

Notes

The port rename callback is not available in JACK 1!
See this mailing list posting [http://comments.gmane.org/gmane.comp.audio.jackit/28888] and this commit message [https://github.com/jackaudio/jack1/commit/94c819accfab2612050e875c24cf325daa0fd26d].

	
set_graph_order_callback(callback)

	Register graph order callback.

Tell the JACK server to call callback whenever the processing
graph is reordered.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

	Parameters

	callback (callable) – User-supplied function that is called whenever the
processing graph is reordered.
It must have this signature:

callback() -> None

The callback is supposed to raise CallbackExit on error.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

	
set_xrun_callback(callback)

	Register xrun callback.

Tell the JACK server to call callback whenever there is an
xrun.

All “notification events” are received in a separated non RT
thread, the code in the supplied function does not need to be
suitable for real-time execution.

Note

This function cannot be called while the client is
activated (after activate() has been called).

	Parameters

	callback (callable) – User-supplied function that is called whenever an xrun has
occured. It must have this signature:

callback(delayed_usecs: float) -> None

The callback argument is the delay in microseconds due to
the most recent XRUN occurrence.
The callback is supposed to raise CallbackExit on error.

Note

Same as with most callbacks, no functions that
interact with the JACK daemon should be used here.

	
set_timebase_callback(callback=None, conditional=False)

	Register as timebase master for the JACK subsystem.

The timebase master registers a callback that updates extended
position information such as beats or timecode whenever
necessary. Without this extended information, there is no need
for this function.

There is never more than one master at a time. When a new
client takes over, the former callback is no longer called.
Taking over the timebase may be done conditionally, so that
callback is not registered if there was a master already.

	Parameters

	
	callback (callable) – Realtime function that returns extended position
information. Its output affects all of the following
process cycle. This realtime function must not wait.
It is called immediately after the process callback (see
set_process_callback()) in the same thread whenever the
transport is rolling, or when any client has requested a new
position in the previous cycle. The first cycle after
set_timebase_callback() is also treated as a new position,
or the first cycle after activate() if the client had been
inactive. The callback must have this signature:

callback(state: int, blocksize: int, pos: jack_position_t, new_pos: bool) -> None

	state

	The current transport state. See transport_state.

	blocksize

	The number of frames in the current period.
See blocksize.

	pos

	The position structure for the next cycle; pos.frame
will be its frame number. If new_pos is False,
this structure contains extended position information
from the current cycle. If new_pos is True, it
contains whatever was set by the requester.
The callback’s task is to update the extended
information here. See transport_query_struct()
for details about jack_position_t.

	new_pos

	True for a newly requested pos, or for the first
cycle after the timebase callback is defined.

Note

The pos argument must not be used to set
pos.frame. To change position, use
transport_reposition_struct() or transport_locate().
These functions are realtime-safe, the timebase callback
can call them directly.

	conditional (bool) – Set to True for a conditional request.

	Returns

	bool – True if the timebase callback was registered.
False if a conditional request failed because another
timebase master is already registered.

	
get_uuid_for_client_name(name)

	Get the session ID for a client name.

The session manager needs this to reassociate a client name to
the session ID.

	
get_client_name_by_uuid(uuid)

	Get the client name for a session ID.

In order to snapshot the graph connections, the session manager
needs to map session IDs to client names.

	
get_port_by_name(name)

	Get port by name.

Given a full port name, this returns a Port, MidiPort,
OwnPort or OwnMidiPort object.

	
get_all_connections(port)

	Return a list of ports which the given port is connected to.

This differs from OwnPort.connections (also available on
OwnMidiPort) in two important respects:

	You may not call this function from code that is executed in
response to a JACK event. For example, you cannot use it in a
graph order callback.

	You need not be the owner of the port to get information
about its connections.

	
get_ports(name_pattern='', is_audio=False, is_midi=False, is_input=False, is_output=False, is_physical=False, can_monitor=False, is_terminal=False)

	Return a list of selected ports.

	Parameters

	
	name_pattern (str) – A regular expression used to select ports by name. If
empty, no selection based on name will be carried out.

	is_audio, is_midi (bool) – Select audio/MIDI ports. If neither of them is True,
both types of ports are selected.

	is_input, is_output, is_physical, can_monitor, is_terminal (bool) – Select ports by their flags. If none of them are True,
no selection based on flags will be carried out.

	Returns

	list of Port/MidiPort/OwnPort/OwnMidiPort – All ports that satisfy the given conditions.

	
class jack.Port(port_ptr)

	A JACK audio port.

This class cannot be instantiated directly. Instead, instances of
this class are returned from Client.get_port_by_name(),
Client.get_ports(), Client.get_all_connections() and
OwnPort.connections.
In addition, instances of this class are available in the callbacks
which are set with Client.set_port_registration_callback(),
Client.set_port_connect_callback() or
Client.set_port_rename_callback.

Note, however, that if the used Client owns the respective port,
instances of OwnPort (instead of Port) will be created. In case
of MIDI ports, instances of MidiPort or OwnMidiPort are created.

Besides being the type of non-owned JACK audio ports, this class
also serves as base class for all other port classes (OwnPort,
MidiPort and OwnMidiPort).

New JACK audio/MIDI ports can be created with the
register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

	
name

	Full name of the JACK port (read-only).

	
shortname

	Short name of the JACK port, not including the client name.

Must be unique among all ports owned by a client.

May be modified at any time. If the resulting full name
(including the client_name: prefix) is longer than
port_name_size(), it will be truncated.

	
aliases

	Returns a list of strings with the aliases for the JACK port.

	
set_alias(alias)

	Set an alias for the JACK port.

Ports can have up to two aliases. If both are already set,
this function will return an error.

	
unset_alias(alias)

	Remove an alias for the JACK port.

If the alias doesn’t exist this function will return an error.

	
uuid

	The UUID of the JACK port.

	
is_audio

	This is always True.

	
is_midi

	This is always False.

	
is_input

	Can the port receive data?

	
is_output

	Can data be read from this port?

	
is_physical

	Does it correspond to some kind of physical I/O connector?

	
can_monitor

	Does a call to request_monitor() make sense?

	
is_terminal

	Is the data consumed/generated?

	
request_monitor(onoff)

	Set input monitoring.

If can_monitor is True, turn input monitoring on or
off. Otherwise, do nothing.

	Parameters

	onoff (bool) – If True, switch monitoring on; if False, switch it
off.

	
class jack.MidiPort(port_ptr)

	A JACK MIDI port.

This class is derived from Port and has exactly the same
attributes and methods.

This class cannot be instantiated directly (see Port).

New JACK audio/MIDI ports can be created with the
register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

See also

Port, OwnMidiPort

	
is_audio

	This is always False.

	
is_midi

	This is always True.

	
class jack.OwnPort(port_ptr, client)

	A JACK audio port owned by a Client.

This class is derived from Port. OwnPort objects can do
everything that Port objects can, plus a lot more.

This class cannot be instantiated directly (see Port).

New JACK audio/MIDI ports can be created with the
register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

	
number_of_connections

	Number of connections to or from port.

	
connections

	List of ports which the port is connected to.

	
is_connected_to(port)

	Am I directly connected to port?

	Parameters

	port (str or Port) – Full port name or port object.

	
connect(port)

	Connect to given port.

	Parameters

	port (str or Port) – Full port name or port object.

See also

Client.connect()

	
disconnect(other=None)

	Disconnect this port.

	Parameters

	other (str or Port) – Port to disconnect from.
By default, disconnect from all connected ports.

	
unregister()

	Unregister port.

Remove the port from the client, disconnecting any existing
connections. This also removes the port from
Client.inports, Client.outports, Client.midi_inports or
Client.midi_outports.

	
get_buffer()

	Get buffer for audio data.

This returns a buffer holding the memory area associated with
the specified port. For an output port, it will be a memory
area that can be written to; for an input port, it will be an
area containing the data from the port’s connection(s), or
zero-filled. If there are multiple inbound connections, the
data will be mixed appropriately.

Caching output ports is DEPRECATED in JACK 2.0, due to some new
optimization (like “pipelining”). Port buffers have to be
retrieved in each callback for proper functioning.

This method shall only be called from within the process
callback (see Client.set_process_callback()).

	
get_array()

	Get audio buffer as NumPy array.

Make sure to import numpy before calling this, otherwise the
first call might take a long time.

This method shall only be called from within the process
callback (see Client.set_process_callback()).

See also

get_buffer()

	
class jack.OwnMidiPort(*args, **kwargs)

	A JACK MIDI port owned by a Client.

This class is derived from OwnPort and MidiPort, which are
themselves derived from Port. It has the same attributes and
methods as OwnPort, but get_buffer() and get_array() are
disabled. Instead, it has methods for sending and receiving MIDI
events (to be used only from within the process callback – see
Client.set_process_callback()).

This class cannot be instantiated directly (see Port).

New JACK audio/MIDI ports can be created with the
register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

	
get_buffer()

	Not available for MIDI ports.

	
get_array()

	Not available for MIDI ports.

	
max_event_size

	Get the size of the largest event that can be stored by the port.

This returns the current space available, taking into
account events already stored in the port.

	
lost_midi_events

	Get the number of events that could not be written to the port.

This being a non-zero value implies that the port is full.
Currently the only way this can happen is if events are lost on
port mixdown.

	
incoming_midi_events()

	Return generator for incoming MIDI events.

JACK MIDI is normalised, the MIDI events yielded by this
generator are guaranteed to be complete MIDI events (the status
byte will always be present, and no realtime events will be
interspersed with the events).

	Yields

	
	time (int) – Time (in samples) relative to the beginning of the current
audio block.

	event (buffer) – The actual MIDI event data.

Warning

The buffer is re-used (and therefore
overwritten) between iterations. If you want to keep the
data beyond the current iteration, please make a copy.

	
clear_buffer()

	Clear an event buffer.

This should be called at the beginning of each process cycle
before calling reserve_midi_event() or write_midi_event().
This function may not be called on an input port.

	
write_midi_event(time, event)

	Create an outgoing MIDI event.

Clients must write normalised MIDI data to the port - no running
status and no (one-byte) realtime messages interspersed with
other messages (realtime messages are fine when they occur on
their own, like other messages).

Events must be written in order, sorted by their sample offsets.
JACK will not sort the events for you, and will refuse to store
out-of-order events.

	Parameters

	
	time (int) – Time (in samples) relative to the beginning of the current
audio block.

	event (bytes or buffer or sequence of int) – The actual MIDI event data.

Note

Buffer objects are only supported for CFFI >= 0.9.

	Raises

	JackError – If MIDI event couldn’t be written.

	
reserve_midi_event(time, size)

	Get a buffer where an outgoing MIDI event can be written to.

Clients must write normalised MIDI data to the port - no running
status and no (one-byte) realtime messages interspersed with
other messages (realtime messages are fine when they occur on
their own, like other messages).

Events must be written in order, sorted by their sample offsets.
JACK will not sort the events for you, and will refuse to store
out-of-order events.

	Parameters

	
	time (int) – Time (in samples) relative to the beginning of the current
audio block.

	size (int) – Number of bytes to reserve.

	Returns

	buffer – A buffer object where MIDI data bytes can be written to.
If no space could be reserved, an empty buffer is returned.

	
class jack.Ports(client, porttype, flag)

	A list of input/output ports.

This class is not meant to be instantiated directly. It is only
used as Client.inports, Client.outports, Client.midi_inports
and Client.midi_outports.

The ports can be accessed by indexing or by iteration.

New ports can be added with register(), existing ports can be
removed by calling their unregister() method.

	
register(shortname, is_terminal=False, is_physical=False)

	Create a new input/output port.

The new OwnPort or OwnMidiPort object is automatically added
to Client.inports, Client.outports, Client.midi_inports or
Client.midi_outports.

	Parameters

	
	shortname (str) – Each port has a short name. The port’s full name contains
the name of the client concatenated with a colon (:)
followed by its short name. The port_name_size() is the
maximum length of this full name. Exceeding that will cause
the port registration to fail.

The port name must be unique among all ports owned by this
client.
If the name is not unique, the registration will fail.

	is_terminal (bool) – For an input port: If True, the data received by the
port will not be passed on or made available at any other
port.
For an output port: If True, the data available at the
port does not originate from any other port

Audio synthesizers, I/O hardware interface clients, HDR
systems are examples of clients that would set this flag for
their ports.

	is_physical (bool) – If True the port corresponds to some kind of physical
I/O connector.

	Returns

	Port – A new OwnPort or OwnMidiPort instance.

	
clear()

	Unregister all ports in the list.

See also

OwnPort.unregister()

	
class jack.RingBuffer(size)

	Create a lock-free ringbuffer.

A ringbuffer is a good way to pass data between threads
(e.g. between the main program and the process callback),
when streaming realtime data to slower media, like audio file
playback or recording.

The key attribute of a ringbuffer is that it can be safely
accessed by two threads simultaneously – one reading from the
buffer and the other writing to it – without using any
synchronization or mutual exclusion primitives. For this to
work correctly, there can only be a single reader and a single
writer thread. Their identities cannot be interchanged.

	Parameters

	size (int) – Size in bytes. JACK will allocate a buffer of at least this
size (rounded up to the next power of 2), but one byte is
reserved for internal use. Use write_space to
determine the actual size available for writing.

	
write_space

	The number of bytes available for writing.

	
write(data)

	Write data into the ringbuffer.

	Parameters

	data (buffer or bytes or iterable of int) – Bytes to be written to the ringbuffer.

	Returns

	int – The number of bytes written, which could be less than the
length of data if there was no more space left
(see write_space).

See also

write_space, write_buffers

	
write_buffers

	Contains two buffer objects that can be written to directly.

Two are needed because the space available for writing may be
split across the end of the ringbuffer. Either of them could be
0 length.

This can be used as a no-copy version of write().

When finished with writing, write_advance() should be used.

Note

After an operation that changes the write pointer
(write(), write_advance(), reset()), the buffers are no
longer valid and one should use this property again to get
new ones.

	
write_advance(size)

	Advance the write pointer.

After data has been written to the ringbuffer using
write_buffers, use this method to advance the buffer pointer,
making the data available for future read operations.

	Parameters

	size (int) – The number of bytes to advance.

	
read_space

	The number of bytes available for reading.

	
read(size)

	Read data from the ringbuffer.

	Parameters

	size (int) – Number of bytes to read.

	Returns

	buffer – A buffer object containing the requested data.
If no more data is left (see read_space), a smaller
(or even empty) buffer is returned.

See also

peek(), read_space, read_buffers

	
peek(size)

	Peek at data from the ringbuffer.

Opposed to read() this function does not move the read
pointer. Thus it’s a convenient way to inspect data in the
ringbuffer in a continuous fashion.
The price is that the data is copied into a newly allocated
buffer. For “raw” non-copy inspection of the data in the
ringbuffer use read_buffers.

	Parameters

	size (int) – Number of bytes to peek.

	Returns

	buffer – A buffer object containing the requested data.
If no more data is left (see read_space), a smaller
(or even empty) buffer is returned.

See also

read(), read_space, read_buffers

	
read_buffers

	Contains two buffer objects that can be read directly.

Two are needed because the data to be read may be split across
the end of the ringbuffer. Either of them could be 0 length.

This can be used as a no-copy version of peek() or read().

When finished with reading, read_advance() should be used.

Note

After an operation that changes the read pointer
(read(), read_advance(), reset()), the buffers are no
longer valid and one should use this property again to get
new ones.

	
read_advance(size)

	Advance the read pointer.

After data has been read from the ringbuffer using
read_buffers or peek(), use this method to advance the
buffer pointers, making that space available for future write
operations.

	Parameters

	size (int) – The number of bytes to advance.

	
mlock()

	Lock a ringbuffer data block into memory.

Uses the mlock() system call. This prevents the
ringbuffer’s memory from being paged to the swap area.

Note

This is not a realtime operation.

	
reset(size=None)

	Reset the read and write pointers, making an empty buffer.

Note

This is not thread safe.

	Parameters

	size (int, optional) – The new size for the ringbuffer.
Must be less than allocated size.

	
size

	The number of bytes in total used by the buffer.

See also

read_space, write_space

	
class jack.Status(code)

	Representation of the JACK status bits.

	
failure

	Overall operation failed.

	
invalid_option

	The operation contained an invalid or unsupported option.

	
name_not_unique

	The desired client name was not unique.

With the use_exact_name option of Client, this situation is
fatal. Otherwise, the name is modified by appending a dash and
a two-digit number in the range “-01” to “-99”. Client.name
will return the exact string that was used. If the specified
name plus these extra characters would be too long, the open
fails instead.

	
server_started

	The JACK server was started for this Client.

Otherwise, it was running already.

	
server_failed

	Unable to connect to the JACK server.

	
server_error

	Communication error with the JACK server.

	
no_such_client

	Requested client does not exist.

	
load_failure

	Unable to load internal client.

	
init_failure

	Unable to initialize client.

	
shm_failure

	Unable to access shared memory.

	
version_error

	Client’s protocol version does not match.

	
backend_error

	Backend error.

	
client_zombie

	Client zombified failure.

	
class jack.TransportState(code)

	Representation of the JACK transport state.

See also

Client.transport_state, Client.transport_query()

	
exception jack.JackError

	Exception for all kinds of JACK-related errors.

	
exception jack.CallbackExit

	To be raised in a callback function to signal failure.

See also

Client.set_process_callback(), Client.set_blocksize_callback(), Client.set_samplerate_callback(), Client.set_port_rename_callback(), Client.set_graph_order_callback(), Client.set_xrun_callback()

	
jack.position2dict(pos)

	Convert CFFI position struct to a dict.

	
jack.version()

	Get tuple of major/minor/micro/protocol version.

	
jack.version_string()

	Get human-readable JACK version.

	
jack.client_name_size()

	Return the maximum number of characters in a JACK client name.

This includes the final NULL character. This value is a constant.

	
jack.port_name_size()

	Maximum length of port names.

The maximum number of characters in a full JACK port name including
the final NULL character. This value is a constant.

A port’s full name contains the owning client name concatenated with
a colon (:) followed by its short name and a NULL character.

	
jack.set_error_function(callback=None)

	Set the callback for error message display.

Set it to None to restore the default error callback function
(which prints the error message plus a newline to stderr).
The callback function must have this signature:

callback(message: str) -> None

	
jack.set_info_function(callback=None)

	Set the callback for info message display.

Set it to None to restore default info callback function
(which prints the info message plus a newline to stderr).
The callback function must have this signature:

callback(message: str) -> None

	
jack.client_pid(name)

	Return PID of a JACK client.

	Parameters

	name (str) – Name of the JACK client whose PID shall be returned.

	Returns

	int – PID of name. If not available, 0 will be returned.

Index

Index

Version History

	Version 0.4.5 (2018-09-02):

	
	Fix issue #54; other minor improvements

	Version 0.4.4 (2018-02-19):

	
	Port.set_alias(), Port.unset_alias() and Port.aliases, thanks to
Jośe Fernando Moyano

	Version 0.4.3 (2017-12-30):

	
	switch to CFFI out-of-line ABI mode (to reduce import time)

	Version 0.4.2 (2016-11-05):

	
	new examples: showtime.py, midi_sine_numpy.py and play_file.py

	new option only_available for port callbacks

	Version 0.4.1 (2016-05-24):

	
	new property jack.Client.transport_frame, deprecating
jack.Client.transport_locate()

	Version 0.4.0 (2015-09-17):

	
	new argument to xrun callback (see jack.Client.set_xrun_callback()),
jack.Client.xrun_delayed_usecs was removed

	jack.Client.transport_reposition_struct()

	callbacks no longer have to return anything, instead they can raise
jack.CallbackExit on error

	midi_sine.py example

	Version 0.3.0 (2015-07-16):

	
	jack.RingBuffer, implemented by Alexandru Stan

	jack.Client.set_timebase_callback(), jack.Client.transport_query(),
jack.Client.transport_query_struct(), with the help of Julien Acroute

	jack.Client.transport_state, jack.STOPPED, jack.ROLLING,
jack.STARTING, jack.NETSTARTING, jack.position2dict()

	the userdata argument was removed from all callbacks

	compatibility with the official JACK installer for Windows, thanks to Julien
Acroute

	Version 0.2.0 (2015-02-23):

	
	MIDI support (jack.MidiPort, jack.OwnMidiPort,
jack.Client.midi_inports, jack.Client.midi_outports, …)

	ignore errors in jack.Client.deactivate() by default, can be overridden

	optional argument to jack.OwnPort.disconnect()

	several examples (chatty_client.py, thru_client.py,
midi_monitor.py and midi_chords.py)

	jack.Port.is_physical, courtesy of Alexandru Stan

	jack.Status

	Version 0.1.0 (2014-12-15):

	Initial release

Other Python Modules for JACK

	PyJack

	https://sourceforge.net/projects/py-jack/

	jacklib from Cadence

	https://github.com/falkTX/Cadence/blob/master/src/jacklib.py

	jacker

	https://github.com/fphammerle/jacker

Example Programs

Chatty Client

chatty_client.py

#!/usr/bin/env python3

"""Create a JACK client that prints a lot of information.

This client registers all possible callbacks (except the process
callback and the timebase callback, which would be just too much noise)
and prints some information whenever they are called.

"""
from __future__ import print_function # only needed for Python 2.x
import jack

print('setting error/info functions')

@jack.set_error_function
def error(msg):
 print('Error:', msg)

@jack.set_info_function
def info(msg):
 print('Info:', msg)

print('starting chatty client')

client = jack.Client('Chatty-Client')

if client.status.server_started:
 print('JACK server was started')
else:
 print('JACK server was already running')
if client.status.name_not_unique:
 print('unique client name generated:', client.name)

print('registering callbacks')

@client.set_shutdown_callback
def shutdown(status, reason):
 print('JACK shutdown!')
 print('status:', status)
 print('reason:', reason)

@client.set_freewheel_callback
def freewheel(starting):
 print(['stopping', 'starting'][starting], 'freewheel mode')

@client.set_blocksize_callback
def blocksize(blocksize):
 print('setting blocksize to', blocksize)

@client.set_samplerate_callback
def samplerate(samplerate):
 print('setting samplerate to', samplerate)

@client.set_client_registration_callback
def client_registration(name, register):
 print('client', repr(name), ['unregistered', 'registered'][register])

@client.set_port_registration_callback
def port_registration(port, register):
 print(repr(port), ['unregistered', 'registered'][register])

@client.set_port_connect_callback
def port_connect(a, b, connect):
 print(['disconnected', 'connected'][connect], a, 'and', b)

try:
 @client.set_port_rename_callback
 def port_rename(port, old, new):
 print('renamed', port, 'from', repr(old), 'to', repr(new))
except AttributeError:
 print('Could not register port rename callback (not available on JACK1).')

@client.set_graph_order_callback
def graph_order():
 print('graph order changed')

@client.set_xrun_callback
def xrun(delay):
 print('xrun; delay', delay, 'microseconds')

print('activating JACK')
with client:
 print('#' * 80)
 print('press Return to quit')
 print('#' * 80)
 input()
 print('closing JACK')

Pass-Through Client

thru_client.py

#!/usr/bin/env python3

"""Create a JACK client that copies input audio directly to the outputs.

This is somewhat modeled after the "thru_client.c" example of JACK 2:
http://github.com/jackaudio/jack2/blob/master/example-clients/thru_client.c

If you have a microphone and loudspeakers connected, this might cause an
acoustical feedback!

"""
import sys
import signal
import os
import jack
import threading

if sys.version_info < (3, 0):
 # In Python 2.x, event.wait() cannot be interrupted with Ctrl+C.
 # Therefore, we disable the whole KeyboardInterrupt mechanism.
 # This will not close the JACK client properly, but at least we can
 # use Ctrl+C.
 signal.signal(signal.SIGINT, signal.SIG_DFL)
else:
 # If you use Python 3.x, everything is fine.
 pass

argv = iter(sys.argv)
By default, use script name without extension as client name:
defaultclientname = os.path.splitext(os.path.basename(next(argv)))[0]
clientname = next(argv, defaultclientname)
servername = next(argv, None)

client = jack.Client(clientname, servername=servername)

if client.status.server_started:
 print('JACK server started')
if client.status.name_not_unique:
 print('unique name {0!r} assigned'.format(client.name))

event = threading.Event()

@client.set_process_callback
def process(frames):
 assert len(client.inports) == len(client.outports)
 assert frames == client.blocksize
 for i, o in zip(client.inports, client.outports):
 o.get_buffer()[:] = i.get_buffer()

@client.set_shutdown_callback
def shutdown(status, reason):
 print('JACK shutdown!')
 print('status:', status)
 print('reason:', reason)
 event.set()

create two port pairs
for number in 1, 2:
 client.inports.register('input_{0}'.format(number))
 client.outports.register('output_{0}'.format(number))

with client:
 # When entering this with-statement, client.activate() is called.
 # This tells the JACK server that we are ready to roll.
 # Our process() callback will start running now.

 # Connect the ports. You can't do this before the client is activated,
 # because we can't make connections to clients that aren't running.
 # Note the confusing (but necessary) orientation of the driver backend
 # ports: playback ports are "input" to the backend, and capture ports
 # are "output" from it.

 capture = client.get_ports(is_physical=True, is_output=True)
 if not capture:
 raise RuntimeError('No physical capture ports')

 for src, dest in zip(capture, client.inports):
 client.connect(src, dest)

 playback = client.get_ports(is_physical=True, is_input=True)
 if not playback:
 raise RuntimeError('No physical playback ports')

 for src, dest in zip(client.outports, playback):
 client.connect(src, dest)

 print('Press Ctrl+C to stop')
 try:
 event.wait()
 except KeyboardInterrupt:
 print('\nInterrupted by user')

When the above with-statement is left (either because the end of the
code block is reached, or because an exception was raised inside),
client.deactivate() and client.close() are called automatically.

Sound File Playback

play_file.py

#!/usr/bin/env python3

"""Play a sound file.

This only reads a certain number of blocks at a time into memory,
therefore it can handle very long files and also files with many
channels.

NumPy and the soundfile module (http://PySoundFile.rtfd.io/) must be
installed for this to work.

"""
from __future__ import division
from __future__ import print_function
import argparse
try:
 import queue # Python 3.x
except ImportError:
 import Queue as queue # Python 2.x
import sys
import threading

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('filename', help='audio file to be played back')
parser.add_argument(
 '-b', '--buffersize', type=int, default=20,
 help='number of blocks used for buffering (default: %(default)s)')
parser.add_argument('-c', '--clientname', default='file player',
 help='JACK client name')
parser.add_argument('-m', '--manual', action='store_true',
 help="don't connect to output ports automatically")
args = parser.parse_args()
if args.buffersize < 1:
 parser.error('buffersize must be at least 1')

q = queue.Queue(maxsize=args.buffersize)
event = threading.Event()

def print_error(*args):
 print(*args, file=sys.stderr)

def xrun(delay):
 print_error("An xrun occured, increase JACK's period size?")

def shutdown(status, reason):
 print_error('JACK shutdown!')
 print_error('status:', status)
 print_error('reason:', reason)
 event.set()

def stop_callback(msg=''):
 if msg:
 print_error(msg)
 for port in client.outports:
 port.get_array().fill(0)
 event.set()
 raise jack.CallbackExit

def process(frames):
 if frames != blocksize:
 stop_callback('blocksize must not be changed, I quit!')
 try:
 data = q.get_nowait()
 except queue.Empty:
 stop_callback('Buffer is empty: increase buffersize?')
 if data is None:
 stop_callback() # Playback is finished
 for channel, port in zip(data.T, client.outports):
 port.get_array()[:] = channel

try:
 import jack
 import soundfile as sf

 client = jack.Client(args.clientname)
 blocksize = client.blocksize
 samplerate = client.samplerate
 client.set_xrun_callback(xrun)
 client.set_shutdown_callback(shutdown)
 client.set_process_callback(process)

 with sf.SoundFile(args.filename) as f:
 for ch in range(f.channels):
 client.outports.register('out_{0}'.format(ch + 1))
 block_generator = f.blocks(blocksize=blocksize, dtype='float32',
 always_2d=True, fill_value=0)
 for _, data in zip(range(args.buffersize), block_generator):
 q.put_nowait(data) # Pre-fill queue
 with client:
 if not args.manual:
 target_ports = client.get_ports(
 is_physical=True, is_input=True, is_audio=True)
 if len(client.outports) == 1 and len(target_ports) > 1:
 # Connect mono file to stereo output
 client.outports[0].connect(target_ports[0])
 client.outports[0].connect(target_ports[1])
 else:
 for source, target in zip(client.outports, target_ports):
 source.connect(target)
 timeout = blocksize * args.buffersize / samplerate
 for data in block_generator:
 q.put(data, timeout=timeout)
 q.put(None, timeout=timeout) # Signal end of file
 event.wait() # Wait until playback is finished
except KeyboardInterrupt:
 parser.exit('\nInterrupted by user')
except (queue.Full):
 # A timeout occured, i.e. there was an error in the callback
 parser.exit(1)
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

“Showtime” Client

showtime.py

#!/usr/bin/env python3

"""Display information about time, transport state et cetera.

This is somewhat modeled after the "showtime.c" example of JACK.
https://github.com/jackaudio/example-clients/blob/master/showtime.c
https://github.com/jackaudio/jack2/blob/master/example-clients/showtime.c

"""
from contextlib import suppress
import time
import sys

import jack

try:
 client = jack.Client('showtime')
except jack.JackError:
 sys.exit('JACK server not running?')

def showtime():
 state, pos = client.transport_query()
 items = []
 items.append('frame = {} frame_time = {} usecs = {} '.format(
 pos['frame'], client.frame_time, pos['usecs']))
 items.append('state: {}'.format(state))
 with suppress(KeyError):
 items.append('BBT: {bar:3}|{beat}|{tick:04}'.format(**pos))
 with suppress(KeyError):
 items.append('TC: ({frame_time:.6f}, {next_time:.6f})'.format(**pos))
 with suppress(KeyError):
 	items.append('BBT offset: ({bbt_offset})'.format(**pos))
 with suppress(KeyError):
 	items.append(
 'audio/video: ({audio_frames_per_video_frame})'.format(**pos))
 with suppress(KeyError):
 video_offset = pos['video_offset']
 if video_offset:
 items.append(' video@: ({})'.format(video_offset))
 else:
 items.append(' no video');
 print(*items, sep='\t')

@client.set_shutdown_callback
def shutdown(status, reason):
 sys.exit('JACK shut down, exiting ...')

with client:
 try:
 while True:
 time.sleep(0.00002)
 showtime()
 except KeyboardInterrupt:
 print('signal received, exiting ...', file=sys.stderr)
 sys.exit(0)

MIDI Monitor

midi_monitor.py

#!/usr/bin/env python3

"""JACK client that prints all received MIDI events."""

import jack
import binascii

client = jack.Client('MIDI-Monitor')
port = client.midi_inports.register('input')

@client.set_process_callback
def process(frames):
 for offset, data in port.incoming_midi_events():
 print('{0}: 0x{1}'.format(client.last_frame_time + offset,
 binascii.hexlify(data).decode()))

with client:
 print('#' * 80)
 print('press Return to quit')
 print('#' * 80)
 input()

MIDI Chord Generator

midi_chords.py

#!/usr/bin/env python3

"""JACK client that creates minor triads from single MIDI notes.

All MIDI events are passed through.
Two additional events are created for each NoteOn and NoteOff event.

"""
import jack
import struct

First 4 bits of status byte:
NOTEON = 0x9
NOTEOFF = 0x8

INTERVALS = 3, 7 # minor triad

client = jack.Client('MIDI-Chord-Generator')
inport = client.midi_inports.register('input')
outport = client.midi_outports.register('output')

@client.set_process_callback
def process(frames):
 outport.clear_buffer()
 for offset, indata in inport.incoming_midi_events():
 # Note: This may raise an exception:
 outport.write_midi_event(offset, indata) # pass through
 if len(indata) == 3:
 status, pitch, vel = struct.unpack('3B', indata)
 if status >> 4 in (NOTEON, NOTEOFF):
 for i in INTERVALS:
 # Note: This may raise an exception:
 outport.write_midi_event(offset, (status, pitch + i, vel))

with client:
 print('#' * 80)
 print('press Return to quit')
 print('#' * 80)
 input()

Simple MIDI Synth

midi_sine.py

#!/usr/bin/env python3
"""Very basic MIDI synthesizer.

This only works in Python 3.x because it uses memoryview.cast() and a
few other sweet Python-3-only features.

This is inspired by the JACK example program "jack_midisine":
http://github.com/jackaudio/jack2/blob/master/example-clients/midisine.c

But it is actually better:

+ ASR envelope
+ unlimited polyphony (well, "only" limited by CPU and memory)
+ arbitrarily many MIDI events per block
+ can handle NoteOn and NoteOff event of the same pitch in one block

It is also worse:

- horribly inefficient (dynamic allocations, sample-wise processing)
- unpredictable because of garbage collection (?)

It sounds a little better than the original, but still quite boring.

"""
import jack
import math
import operator
import threading

First 4 bits of status byte:
NOTEON = 0x9
NOTEOFF = 0x8

attack = 0.01 # seconds
release = 0.2 # seconds

fs = None
voices = {}

client = jack.Client('MIDI-Sine')
midiport = client.midi_inports.register('midi_in')
audioport = client.outports.register('audio_out')
event = threading.Event()

def m2f(note):
 """Convert MIDI note number to frequency in Hertz.

 See https://en.wikipedia.org/wiki/MIDI_Tuning_Standard.

 """
 return 2 ** ((note - 69) / 12) * 440

class Voice:

 def __init__(self, pitch):
 self.time = 0
 self.time_increment = m2f(pitch) / fs
 self.weight = 0

 self.target_weight = 0
 self.weight_step = 0
 self.compare = None

 def trigger(self, vel):
 if vel:
 dur = attack * fs
 else:
 dur = release * fs
 self.target_weight = vel / 127
 self.weight_step = (self.target_weight - self.weight) / dur
 self.compare = operator.ge if self.weight_step > 0 else operator.le

 def update(self):
 """Increment weight."""
 if self.weight_step:
 self.weight += self.weight_step
 if self.compare(self.weight, self.target_weight):
 self.weight = self.target_weight
 self.weight_step = 0

@client.set_process_callback
def process(frames):
 """Main callback."""
 events = {}
 buf = memoryview(audioport.get_buffer()).cast('f')
 for offset, data in midiport.incoming_midi_events():
 if len(data) == 3:
 status, pitch, vel = bytes(data)
 # MIDI channel number is ignored!
 status >>= 4
 if status == NOTEON and vel > 0:
 events.setdefault(offset, []).append((pitch, vel))
 elif status in (NOTEON, NOTEOFF):
 # NoteOff velocity is ignored!
 events.setdefault(offset, []).append((pitch, 0))
 else:
 pass # ignore
 else:
 pass # ignore
 for i in range(len(buf)):
 buf[i] = 0
 try:
 eventlist = events[i]
 except KeyError:
 pass
 else:
 for pitch, vel in eventlist:
 if pitch not in voices:
 if not vel:
 break
 voices[pitch] = Voice(pitch)
 voices[pitch].trigger(vel)
 for voice in voices.values():
 voice.update()
 if voice.weight > 0:
 buf[i] += voice.weight * math.sin(2 * math.pi * voice.time)
 voice.time += voice.time_increment
 if voice.time >= 1:
 voice.time -= 1
 dead = [k for k, v in voices.items() if v.weight <= 0]
 for pitch in dead:
 del voices[pitch]

@client.set_samplerate_callback
def samplerate(samplerate):
 global fs
 fs = samplerate
 voices.clear()

@client.set_shutdown_callback
def shutdown(status, reason):
 print('JACK shutdown:', reason, status)
 event.set()

with client:
 print('Press Ctrl+C to stop')
 try:
 event.wait()
 except KeyboardInterrupt:
 print('\nInterrupted by user')

Simple MIDI Synth (NumPy Edition)

midi_sine_numpy.py

#!/usr/bin/env python3
"""Very basic MIDI synthesizer.

This does the same as midi_sine.py, but it uses NumPy and block
processing. It is therefore much more efficient. But there are still
many allocations and dynamically growing and shrinking data structures.

"""
import jack
import numpy as np
import threading

First 4 bits of status byte:
NOTEON = 0x9
NOTEOFF = 0x8

attack_seconds = 0.01
release_seconds = 0.2

attack = None
release = None
fs = None
voices = {}

client = jack.Client('MIDI-Sine-NumPy')
midiport = client.midi_inports.register('midi_in')
audioport = client.outports.register('audio_out')
event = threading.Event()

def m2f(note):
 """Convert MIDI note number to frequency in Hertz.

 See https://en.wikipedia.org/wiki/MIDI_Tuning_Standard.

 """
 return 2 ** ((note - 69) / 12) * 440

def update_envelope(envelope, begin, target, vel):
 """Helper function to calculate envelopes.

 envelope: array of velocities, will be mutated
 begin: sample index where ramp begins
 target: sample index where *vel* shall be reached
 vel: final velocity value

 If the ramp goes beyond the blocksize, it is supposed to be
 continued in the next block.

 A reference to *envelope* is returned, as well as the (unchanged)
 vel and the target index of the following block where *vel* shall
 be reached.

 """
 blocksize = len(envelope)
 old_vel = envelope[begin]
 slope = (vel - old_vel) / (target - begin + 1)
 ramp = np.arange(min(target, blocksize) - begin) + 1
 envelope[begin:target] = ramp * slope + old_vel
 if target < blocksize:
 envelope[target:] = vel
 target = 0
 else:
 target -= blocksize
 return envelope, vel, target

@client.set_process_callback
def process(blocksize):
 """Main callback."""

 # Step 1: Update/delete existing voices from previous block

 # Iterating over a copy because items may be deleted:
 for pitch in list(voices):
 envelope, vel, target = voices[pitch]
 if any([vel, target]):
 envelope[0] = envelope[-1]
 voices[pitch] = update_envelope(envelope, 0, target, vel)
 else:
 del voices[pitch]

 # Step 2: Create envelopes from the MIDI events of the current block

 for offset, data in midiport.incoming_midi_events():
 if len(data) == 3:
 status, pitch, vel = bytes(data)
 # MIDI channel number is ignored!
 status >>= 4
 if status == NOTEON and vel > 0:
 try:
 envelope, _, _ = voices[pitch]
 except KeyError:
 envelope = np.zeros(blocksize)
 voices[pitch] = update_envelope(
 envelope, offset, offset + attack, vel)
 elif status in (NOTEON, NOTEOFF):
 # NoteOff velocity is ignored!
 try:
 envelope, _, _ = voices[pitch]
 except KeyError:
 print('NoteOff without NoteOn (ignored)')
 continue
 voices[pitch] = update_envelope(
 envelope, offset, offset + release, 0)
 else:
 pass # ignore
 else:
 pass # ignore

 # Step 3: Create sine tones, apply envelopes, add to output buffer

 buf = audioport.get_array()
 buf.fill(0)
 for pitch, (envelope, _, _) in voices.items():
 t = (np.arange(blocksize) + client.last_frame_time) / fs
 tone = np.sin(2 * np.pi * m2f(pitch) * t)
 buf += tone * envelope / 127

@client.set_samplerate_callback
def samplerate(samplerate):
 global fs, attack, release
 fs = samplerate
 attack = int(attack_seconds * fs)
 release = int(release_seconds * fs)
 voices.clear()

@client.set_shutdown_callback
def shutdown(status, reason):
 print('JACK shutdown:', reason, status)
 event.set()

with client:
 print('Press Ctrl+C to stop')
 try:
 event.wait()
 except KeyboardInterrupt:
 print('\nInterrupted by user')

 nav.xhtml

 Table of Contents

 		
 JACK Audio Connection Kit (JACK) Client for Python

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

