
JACK Audio Connection Kit (JACK)
Client for Python

Release 0.4.5

Matthias Geier

2018-08-16

Contents

1 Requirements 1

2 Installation 2

3 Usage 2

4 Contributing 4

5 API Documentation 5

6 Version History 25

7 Other Python Modules for JACK 26

This Python module provides bindings for the JACK1 library.

Documentation: http://jackclient-python.readthedocs.io/

Code: https://github.com/spatialaudio/jackclient-python/

License: MIT – see the file LICENSE for details.
23

1 Requirements

Python: Of course, you’ll need Python4. Any version where CFFI (see below) is supported should work. If you
don’t have Python installed yet, you should get one of the distributions which already include CFFI and
NumPy (and many other useful things), e.g. Anaconda5 or WinPython6.

1 http://jackaudio.org/
2 https://pypi.python.org/pypi/JACK-Client/
3 https://repology.org/metapackage/python:jack-client
4 https://www.python.org/
5 https://www.anaconda.com/download/
6 http://winpython.github.io/

http://jackaudio.org/
http://jackclient-python.readthedocs.io/
https://github.com/spatialaudio/jackclient-python/
https://pypi.python.org/pypi/JACK-Client/
https://repology.org/metapackage/python:jack-client
https://www.python.org/
https://www.anaconda.com/download/
http://winpython.github.io/

pip/setuptools: Those are needed for the installation of the Python module and its dependencies. Most systems
will have these installed already, but if not, you should install it with your package manager or you can
download and install pip and setuptools as described on the pip installation7 page. If you happen to
have pip but not setuptools, use this command:

python3 -m pip install setuptools --user

To upgrade to a newer version of an already installed package (including pip itself), use the --upgrade
flag.

CFFI: The C Foreign Function Interface for Python8 is used to access the C-API of the JACK library from within
Python. It supports CPython 2.6, 2.7, 3.x; and is distributed with PyPy9. If it’s not installed already, you
should install it with your package manager (the package might be called python3-cffi or similar), or
you can get it with:

python3 -m pip install cffi --user

JACK library: The JACK10 library must be installed on your system (and CFFI must be able to find it). Again,
you should use your package manager to install it. Make sure you install the JACK daemon (called jackd).
This will also install the JACK library package. If you don’t have a package manager, you can try one of
the binary installers from the JACK download page11. If you prefer, you can of course also download the
sources and compile everything locally.

NumPy (optional): NumPy12 is only needed if you want to access the input and output buffers in the process
callback as NumPy arrays. The only place where NumPy is needed is jack.OwnPort.get_array().
If you need NumPy, you should install it with your package manager or use a Python distribution that already
includes NumPy (see above). You can also install NumPy with pip, but depending on your platform, this
might require a compiler and several additional libraries:

python3 -m pip install NumPy --user

2 Installation

Once you have installed the above-mentioned dependencies, you can use pip to download and install the latest
release with a single command:

python3 -m pip install JACK-Client --user

If you want to install it system-wide for all users (assuming you have the necessary rights), you can just drop the
--user option. If you have installed the module already, you can use the --upgrade flag to get the newest
release.

To un-install, use:

python3 -m pip uninstall JACK-Client

3 Usage

First, import the module:

7 https://pip.pypa.io/en/latest/installing/
8 http://cffi.readthedocs.org/
9 http://pypy.org/

10 http://jackaudio.org/
11 http://jackaudio.org/downloads/
12 http://www.numpy.org/

https://pip.pypa.io/en/latest/installing/
http://cffi.readthedocs.org/
http://pypy.org/
http://jackaudio.org/
http://jackaudio.org/downloads/
http://www.numpy.org/

>>> import jack

Then, you most likely want to create a new jack.Client:

>>> client = jack.Client('MyGreatClient')

You probably want to create some audio input and output ports, too:

>>> client.inports.register('input_1')
jack.OwnPort('MyGreatClient:input_1')
>>> client.outports.register('output_1')
jack.OwnPort('MyGreatClient:output_1')

As you can see, these functions return the newly created port. If you want, you can save it for later:

>>> in2 = client.inports.register('input_2')
>>> out2 = client.outports.register('output_2')

To see what you can do with the returned objects, have a look at the documentation of the class jack.OwnPort.

In case you forgot, you should remind yourself about the ports you just created:

>>> client.inports
[jack.OwnPort('MyGreatClient:input_1'), jack.OwnPort('MyGreatClient:input_2')]
>>> client.outports
[jack.OwnPort('MyGreatClient:output_1'), jack.OwnPort('MyGreatClient:output_2')]

Have a look at the documentation of the class jack.Ports to get more detailed information about these lists of
ports.

If you have selected an appropriate driver in your JACK settings, you can also create MIDI ports:

>>> client.midi_inports.register('midi_in')
jack.OwnMidiPort('MyGreatClient:midi_in')
>>> client.midi_outports.register('midi_out')
jack.OwnMidiPort('MyGreatClient:midi_out')

You can check what other JACK ports are available (your output may be different):

>>> client.get_ports()
[jack.Port('system:capture_1'),
jack.Port('system:capture_2'),
jack.Port('system:playback_1'),
jack.Port('system:playback_2'),
jack.MidiPort('system:midi_capture_1'),
jack.MidiPort('system:midi_playback_1'),
jack.OwnPort('MyGreatClient:input_1'),
jack.OwnPort('MyGreatClient:output_1'),
jack.OwnPort('MyGreatClient:input_2'),
jack.OwnPort('MyGreatClient:output_2'),
jack.OwnMidiPort('MyGreatClient:midi_in'),
jack.OwnMidiPort('MyGreatClient:midi_out')]

Note that the ports you created yourself are of type jack.OwnPort and jack.OwnMidiPort, while other
ports are merely of type jack.Port and jack.MidiPort, respectively.

You can also be more specific when looking for ports:

>>> client.get_ports(is_audio=True, is_output=True, is_physical=True)
[jack.Port('system:capture_1'), jack.Port('system:capture_2')]

You can even use regular expressions to search for ports:

>>> client.get_ports('Great.*2$')
[jack.OwnPort('MyGreatClient:input_2'), jack.OwnPort('MyGreatClient:output_2')]

If you want, you can also set all kinds of callback functions for your client. For details see the documentation for
the class jack.Client and the example applications in the examples/ directory.

Once you are ready to run, you should activate your client:

>>> client.activate()

As soon as the client is activated, you can make connections (this isn’t possible before activating the client):

>>> client.connect('system:capture_1', 'MyGreatClient:input_1')
>>> client.connect('MyGreatClient:output_1', 'system:playback_1')

You can also use the port objects from before instead of port names:

>>> client.connect(out2, 'system:playback_2')
>>> in2.connect('system:capture_2')

Use jack.Client.get_all_connections() to find out which other ports are connected to a given port.
If you own the port, you can also use jack.OwnPort.connections.

>>> client.get_all_connections('system:playback_1')
[jack.OwnPort('MyGreatClient:output_1')]
>>> out2.connections
[jack.Port('system:playback_2')]

Of course you can also disconnect ports, there are again several possibilities:

>>> client.disconnect('system:capture_1', 'MyGreatClient:input_1')
>>> client.disconnect(out2, 'system:playback_2')
>>> in2.disconnect() # disconnect all connections with in2

If you don’t need your ports anymore, you can un-register them:

>>> in2.unregister()
>>> client.outports.clear() # unregister all audio output ports

Finally, you can de-activate your JACK client and close it:

>>> client.deactivate()
>>> client.close()

4 Contributing

If you find bugs, errors, omissions or other things that need improvement, please create an issue or a pull request
at https://github.com/spatialaudio/jackclient-python. Contributions are always welcome!

Instead of pip-installing the latest release from PyPI, you should get the newest development version from
Github13:

git clone https://github.com/spatialaudio/jackclient-python.git
cd jackclient-python
python3 -m pip install --user -e .

. . . where -e stands for --editable. This way, your installation always stays up-to-date, even if you pull new
changes from the Github repository.

13 https://github.com/spatialaudio/jackclient-python/

https://github.com/spatialaudio/jackclient-python
https://github.com/spatialaudio/jackclient-python/

Note: Whenever the file jack_build.py changes (either because you edited it or it was updated by pulling
from Github or switching branches), you have to run the last command again.

If you make changes to the documentation, you can locally re-create the HTML pages using Sphinx14. You can
install it and a few other necessary packages with:

python3 -m pip install -r doc/requirements.txt --user

To create the HTML pages, use:

python3 setup.py build_sphinx

The generated files will be available in the directory build/sphinx/html/.

There are no proper tests (yet?), but the code examples from the README file can be verified with pytest15. If
you haven’t installed it already, you can install it with:

python3 -m pip install pytest ---user

As soon as pytest16 is installed, you can run the (rudimentary) tests with:

python3 -m pytest

5 API Documentation

JACK Client for Python.

http://jackclient-python.readthedocs.io/

jack.STOPPED = 0
Transport halted.

jack.ROLLING = 1
Transport playing.

jack.STARTING = 3
Waiting for sync ready.

jack.NETSTARTING = 4
Waiting for sync ready on the network.

class jack.Client(name, use_exact_name=False, no_start_server=False, servername=None, ses-
sion_id=None)

Create a new JACK client.

A client object is a context manager, i.e. it can be used in a with statement to automatically call
activate() in the beginning of the statement and deactivate() and close() on exit.

Parameters name (str) – The desired client name of at most client_name_size() char-
acters. The name scope is local to each server. Unless forbidden by the use_exact_name
option, the server will modify this name to create a unique variant, if needed.

Other Parameters

• use_exact_name (bool) – Whether an error should be raised if name is not unique. See
Status.name_not_unique.

14 http://sphinx-doc.org/
15 https://pytest.org/
16 https://pytest.org/

http://sphinx-doc.org/
https://pytest.org/
https://pytest.org/
http://jackclient-python.readthedocs.io/

• no_start_server (bool) – Do not automatically start the JACK server when it is not al-
ready running. This option is always selected if JACK_NO_START_SERVER is defined
in the calling process environment.

• servername (str) – Selects from among several possible concurrent server instances.
Server names are unique to each user. If unspecified, use 'default' unless
JACK_DEFAULT_SERVER is defined in the process environment.

• session_id (str) – Pass a SessionID Token. This allows the sessionmanager to identify
the client again.

name
The name of the JACK client (read-only).

samplerate
The sample rate of the JACK system (read-only).

blocksize
The JACK block size (must be a power of two).

The current maximum size that will ever be passed to the process callback. It should only be queried
before activate() has been called. This size may change, clients that depend on it must register a
callback with set_blocksize_callback() so they will be notified if it does.

Changing the blocksize stops the JACK engine process cycle, then calls all registered callback func-
tions (see set_blocksize_callback()) before restarting the process cycle. This will cause a
gap in the audio flow, so it should only be done at appropriate stopping points.

status
JACK client status. See Status.

realtime
Whether JACK is running with -R (--realtime).

frames_since_cycle_start
Time since start of audio block.

The estimated time in frames that has passed since the JACK server began the current process cycle.

frame_time
The estimated current time in frames.

This is intended for use in other threads (not the process callback). The return value can be compared
with the value of last_frame_time to relate time in other threads to JACK time.

last_frame_time
The precise time at the start of the current process cycle.

This may only be used from the process callback (see set_process_callback()), and can be
used to interpret timestamps generated by frame_time in other threads with respect to the current
process cycle.

This is the only jack time function that returns exact time: when used during the process callback
it always returns the same value (until the next process callback, where it will return that value +
blocksize, etc). The return value is guaranteed to be monotonic and linear in this fashion unless an
xrun occurs (see set_xrun_callback()). If an xrun occurs, clients must check this value again,
as time may have advanced in a non-linear way (e.g. cycles may have been skipped).

inports
A list of audio input Ports.

New ports can be created and added to this list with inports.register(). When
unregister() is called on one of the items in this list, this port is removed from the list.
inports.clear() can be used to unregister all audio input ports at once.

See also:

Ports, OwnPort

outports
A list of audio output Ports.

New ports can be created and added to this list with outports.register(). When
unregister() is called on one of the items in this list, this port is removed from the list.
outports.clear() can be used to unregister all audio output ports at once.

See also:

Ports, OwnPort

midi_inports
A list of MIDI input Ports.

New MIDI ports can be created and added to this list with midi_inports.register(). When
unregister() is called on one of the items in this list, this port is removed from the list.
midi_inports.clear() can be used to unregister all MIDI input ports at once.

See also:

Ports, OwnMidiPort

midi_outports
A list of MIDI output Ports.

New MIDI ports can be created and added to this list with midi_outports.register().
When unregister() is called on one of the items in this list, this port is removed from the list.
midi_outports.clear() can be used to unregister all MIDI output ports at once.

See also:

Ports, OwnMidiPort

owns(port)
Check if a given port belongs to self.

Parameters port (str or Port) – Full port name or Port, MidiPort, OwnPort or
OwnMidiPort object.

activate()
Activate JACK client.

Tell the JACK server that the program is ready to start processing audio.

deactivate(ignore_errors=True)
De-activate JACK client.

Tell the JACK server to remove self from the process graph. Also, disconnect all ports belonging to it,
since inactive clients have no port connections.

cpu_load()
Return the current CPU load estimated by JACK.

This is a running average of the time it takes to execute a full process cycle for all clients as a percent-
age of the real time available per cycle determined by blocksize and samplerate.

close(ignore_errors=True)
Close the JACK client.

connect(source, destination)
Establish a connection between two ports.

When a connection exists, data written to the source port will be available to be read at the destination
port.

Audio ports can obviously not be connected with MIDI ports.

Parameters

• source (str or Port) – One end of the connection. Must be an output port.

• destination (str or Port) – The other end of the connection. Must be an input port.

See also:

OwnPort.connect(), disconnect()

disconnect(source, destination)
Remove a connection between two ports.

Parameters source, destination (str or Port) – See connect().

transport_start()
Start JACK transport.

transport_stop()
Stop JACK transport.

transport_state
JACK transport state.

This is one of STOPPED, ROLLING, STARTING, NETSTARTING.

See also:

transport_query

transport_frame
Get/set current JACK transport frame.

Return an estimate of the current transport frame, including any time elapsed since the last transport
positional update. Assigning a frame number repositions the JACK transport.

transport_locate(frame)
Deprecated since version 0.4.1: Use transport_frame instead

transport_query()
Query the current transport state and position.

This is a convenience function that does the same as transport_query_struct(), but it only
returns the valid fields in an easy-to-use dict.

Returns

• state (TransportState) – The transport state can take following values: STOPPED,
ROLLING, STARTING and NETSTARTING.

• position (dict) – A dictionary containing only the valid fields of the structure returned
by transport_query_struct().

See also:

transport_state, transport_query_struct()

transport_query_struct()
Query the current transport state and position.

This function is realtime-safe, and can be called from any thread. If called from the process thread,
the returned position corresponds to the first frame of the current cycle and the state returned is valid
for the entire cycle.

Returns

• state (int) – The transport state can take following values: STOPPED, ROLLING,
STARTING and NETSTARTING.

• position (jack_position_t) – See the JACK transport documentation17 for the available
fields.

17 http://jackaudio.org/files/docs/html/structjack__position__t.html

http://jackaudio.org/files/docs/html/structjack__position__t.html

See also:

transport_query(), transport_reposition_struct()

transport_reposition_struct(position)
Request a new transport position.

May be called at any time by any client. The new position takes effect in two process cycles. If there
are slow-sync clients and the transport is already rolling, it will enter the STARTING state and begin
invoking their sync callbacks (see jack_set_sync_callback()18) until ready. This function is realtime-
safe.

Parameters position (jack_position_t) – Requested new transport position. This is the same
structure as returned by transport_query_struct().

See also:

transport_query_struct(), transport_locate()

set_freewheel(onoff)
Start/Stop JACK’s “freewheel” mode.

When in “freewheel” mode, JACK no longer waits for any external event to begin the start of the next
process cycle.

As a result, freewheel mode causes “faster than realtime” execution of a JACK graph. If possessed,
real-time scheduling is dropped when entering freewheel mode, and if appropriate it is reacquired
when stopping.

IMPORTANT: on systems using capabilities to provide real-time scheduling (i.e. Linux kernel 2.4), if
onoff is zero, this function must be called from the thread that originally called activate(). This
restriction does not apply to other systems (e.g. Linux kernel 2.6 or OS X).

Parameters onoff (bool) – If True, freewheel mode starts. Otherwise freewheel mode
ends.

See also:

set_freewheel_callback()

set_shutdown_callback(callback)
Register shutdown callback.

Register a function (and optional argument) to be called if and when the JACK server shuts down the
client thread. The function must be written as if it were an asynchonrous POSIX signal handler – use
only async-safe functions, and remember that it is executed from another thread. A typical function
might set a flag or write to a pipe so that the rest of the application knows that the JACK client thread
has shut down.

Note: Clients do not need to call this. It exists only to help more complex clients understand what is
going on. It should be called before activate().

Parameters callback (callable) – User-supplied function that is called whenever the JACK
daemon is shutdown. It must have this signature:

callback(status: Status, reason: str) -> None

The argument status is of type jack.Status.

Note: The callback should typically signal another thread to correctly finish cleanup by
calling close() (since it cannot be called directly in the context of the thread that calls
the shutdown callback).

18 http://jackaudio.org/files/docs/html/group__TransportControl.html

http://jackaudio.org/files/docs/html/group__TransportControl.html

After server shutdown, the client is not deallocated by JACK, the user (that’s you!) is
responsible to properly use close() to release client ressources. Alternatively, the
Client object can be used as a context manager in a with statement, which takes care
of activating, deactivating and closing the client automatically.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

set_process_callback(callback)
Register process callback.

Tell the JACK server to call callback whenever there is work be done.

The code in the supplied function must be suitable for real-time execution. That means that it cannot
call functions that might block for a long time. This includes malloc, free, printf, pthread_mutex_lock,
sleep, wait, poll, select, pthread_join, pthread_cond_wait, etc, etc.

Warning: Most Python interpreters use a global interpreter lock (GIL)19, which violates the
above real-time requirement. Furthermore, Python’s garbage collector20 might become active at
an inconvenient time and block the process callback for some time.

Because of this, Python is not really suitable for real-time processing. If you want to implement a
reliable real-time audio/MIDI application, you should use a different programming language, such
as C or C++.

If you can live with some random audio drop-outs now and then, feel free to continue using Python!

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters callback (callable) – User-supplied function that is called by the engine any-
time there is work to be done. It must have this signature:

callback(frames: int) -> None

The argument frames specifies the number of frames that have to be processed in the
current audio block. It will be the same number as blocksize and it will be a power
of two.

As long as the client is active, the callback will be called once in each process cycle.
However, if an exception is raised inside of a callback, it will not be called anymore. The
exception CallbackExit can be used to silently prevent further callback invocations,
all other exceptions will print an error message to stderr.

set_freewheel_callback(callback)
Register freewheel callback.

Tell the JACK server to call callback whenever we enter or leave “freewheel” mode. The argument to
the callback will be True if JACK is entering freewheel mode, and False otherwise.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

19 https://en.wikipedia.org/wiki/Global_Interpreter_Lock
20 https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

https://en.wikipedia.org/wiki/Global_Interpreter_Lock
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters callback (callable) – User-supplied function that is called whenever JACK
starts or stops freewheeling. It must have this signature:

callback(starting: bool) -> None

The argument starting is True if we start to freewheel, False otherwise.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

See also:

set_freewheel()

set_blocksize_callback(callback)
Register blocksize callback.

Tell JACK to call callback whenever the size of the the buffer that will be passed to the process
callback is about to change. Clients that depend on knowing the buffer size must supply a callback
before activating themselves.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters callback (callable) – User-supplied function that is invoked whenever the
JACK engine buffer size changes. It must have this signature:

callback(blocksize: int) -> None

The argument blocksize is the new buffer size. The callback is supposed to raise
CallbackExit on error.

Note: Although this function is called in the JACK process thread, the normal process
cycle is suspended during its operation, causing a gap in the audio flow. So, the call-
back can allocate storage, touch memory not previously referenced, and perform other
operations that are not realtime safe.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

See also:

blocksize

set_samplerate_callback(callback)
Register samplerate callback.

Tell the JACK server to call callback whenever the system sample rate changes.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters callback (callable) – User-supplied function that is called when the engine
sample rate changes. It must have this signature:

callback(samplerate: int) -> None

The argument samplerate is the new engine sample rate. The callback is supposed to
raise CallbackExit on error.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

See also:

samplerate

set_client_registration_callback(callback)
Register client registration callback.

Tell the JACK server to call callback whenever a client is registered or unregistered.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters callback (callable) – User-supplied function that is called whenever a client is
registered or unregistered. It must have this signature:

callback(name: str, register: bool) -> None

The first argument contains the client name, the second argument is True if the client is
being registered and False if the client is being unregistered.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

set_port_registration_callback(callback=None, only_available=True)
Register port registration callback.

Tell the JACK server to call callback whenever a port is registered or unregistered.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Note: Due to JACK 1 behavior, it is not possible to get the pointer to an unregistering JACK Port
if it already existed before activate() was called. This will cause the callback not to be called if
only_available is True, or called with None as first argument (see below).

To avoid this, call Client.get_ports() just after activate(), allowing the module to store
pointers to already existing ports and always receive a Port argument for this callback.

Parameters

• callback (callable) – User-supplied function that is called whenever a port is regis-
tered or unregistered. It must have this signature:

callback(port: Port, register: bool) -> None

The first argument is a Port, MidiPort, OwnPort or OwnMidiPort object, the
second argument is True if the port is being registered, False if the port is being
unregistered.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

• only_available (bool, optional) – If True, the callback is not called if the port in
question is not available anymore (after another JACK client has unregistered it). If
False, it is called nonetheless, but the first argument of the callback will be None if
the port is not available anymore.

See also:

Ports.register()

set_port_connect_callback(callback=None, only_available=True)
Register port connect callback.

Tell the JACK server to call callback whenever a port is connected or disconnected.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Note: Due to JACK 1 behavior, it is not possible to get the pointer to an unregistering JACK Port
if it already existed before activate() was called. This will cause the callback not to be called if
only_available is True, or called with None as first argument (see below).

To avoid this, call Client.get_ports() just after activate(), allowing the module to store
pointers to already existing ports and always receive a Port argument for this callback.

Parameters

• callback (callable) – User-supplied function that is called whenever a port is con-
nected or disconnected. It must have this signature:

callback(a: Port, b: Port, connect: bool) -> None

The first and second arguments contain Port, MidiPort, OwnPort or
OwnMidiPort objects of the ports which are connected or disconnected. The third
argument is True if the ports were connected and False if the ports were discon-
nected.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

• only_available (bool, optional) – See set_port_registration_callback().
If False, the first and/or the second argument to the callback may be None.

See also:

Client.connect(), OwnPort.connect()

set_port_rename_callback(callback=None, only_available=True)
Register port rename callback.

Tell the JACK server to call callback whenever a port is renamed.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters

• callback (callable) – User-supplied function that is called whenever the port name has
been changed. It must have this signature:

callback(port: Port, old: str, new: str) -> None

The first argument is the port that has been renamed (a Port, MidiPort, OwnPort
or OwnMidiPort object); the second and third argument is the old and new name,
respectively. The callback is supposed to raise CallbackExit on error.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

• only_available (bool, optional) – See set_port_registration_callback().

See also:

Port.shortname

Notes

The port rename callback is not available in JACK 1! See this mailing list posting21 and this commit
message22.

set_graph_order_callback(callback)
Register graph order callback.

Tell the JACK server to call callback whenever the processing graph is reordered.

21 http://comments.gmane.org/gmane.comp.audio.jackit/28888
22 https://github.com/jackaudio/jack1/commit/94c819accfab2612050e875c24cf325daa0fd26d

http://comments.gmane.org/gmane.comp.audio.jackit/28888
https://github.com/jackaudio/jack1/commit/94c819accfab2612050e875c24cf325daa0fd26d
https://github.com/jackaudio/jack1/commit/94c819accfab2612050e875c24cf325daa0fd26d

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters callback (callable) – User-supplied function that is called whenever the pro-
cessing graph is reordered. It must have this signature:

callback() -> None

The callback is supposed to raise CallbackExit on error.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

set_xrun_callback(callback)
Register xrun callback.

Tell the JACK server to call callback whenever there is an xrun.

All “notification events” are received in a separated non RT thread, the code in the supplied function
does not need to be suitable for real-time execution.

Note: This function cannot be called while the client is activated (after activate() has been
called).

Parameters callback (callable) – User-supplied function that is called whenever an xrun
has occured. It must have this signature:

callback(delayed_usecs: float) -> None

The callback argument is the delay in microseconds due to the most recent XRUN oc-
currence. The callback is supposed to raise CallbackExit on error.

Note: Same as with most callbacks, no functions that interact with the JACK daemon
should be used here.

set_timebase_callback(callback=None, conditional=False)
Register as timebase master for the JACK subsystem.

The timebase master registers a callback that updates extended position information such as beats or
timecode whenever necessary. Without this extended information, there is no need for this function.

There is never more than one master at a time. When a new client takes over, the former callback is no
longer called. Taking over the timebase may be done conditionally, so that callback is not registered
if there was a master already.

Parameters

• callback (callable) – Realtime function that returns extended position informa-
tion. Its output affects all of the following process cycle. This realtime func-
tion must not wait. It is called immediately after the process callback (see
set_process_callback()) in the same thread whenever the transport is rolling,
or when any client has requested a new position in the previous cycle. The first cycle
after set_timebase_callback() is also treated as a new position, or the first

cycle after activate() if the client had been inactive. The callback must have this
signature:

callback(state: int, blocksize: int, pos: jack_position_t, new_
→˓pos: bool) -> None

state The current transport state. See transport_state.

blocksize The number of frames in the current period. See blocksize.

pos The position structure for the next cycle; pos.frame will be its frame num-
ber. If new_pos is False, this structure contains extended position information
from the current cycle. If new_pos is True, it contains whatever was set by the
requester. The callback’s task is to update the extended information here. See
transport_query_struct() for details about jack_position_t.

new_pos True for a newly requested pos, or for the first cycle after the timebase
callback is defined.

Note: The pos argument must not be used to set pos.frame. To change position,
use transport_reposition_struct() or transport_locate(). These
functions are realtime-safe, the timebase callback can call them directly.

• conditional (bool) – Set to True for a conditional request.

Returns bool – True if the timebase callback was registered. False if a conditional re-
quest failed because another timebase master is already registered.

get_uuid_for_client_name(name)
Get the session ID for a client name.

The session manager needs this to reassociate a client name to the session ID.

get_client_name_by_uuid(uuid)
Get the client name for a session ID.

In order to snapshot the graph connections, the session manager needs to map session IDs to client
names.

get_port_by_name(name)
Get port by name.

Given a full port name, this returns a Port, MidiPort, OwnPort or OwnMidiPort object.

get_all_connections(port)
Return a list of ports which the given port is connected to.

This differs from OwnPort.connections (also available on OwnMidiPort) in two important
respects:

1. You may not call this function from code that is executed in response to a JACK event. For
example, you cannot use it in a graph order callback.

2. You need not be the owner of the port to get information about its connections.

get_ports(name_pattern=”, is_audio=False, is_midi=False, is_input=False, is_output=False,
is_physical=False, can_monitor=False, is_terminal=False)

Return a list of selected ports.

Parameters

• name_pattern (str) – A regular expression used to select ports by name. If empty, no
selection based on name will be carried out.

• is_audio, is_midi (bool) – Select audio/MIDI ports. If neither of them is True, both
types of ports are selected.

• is_input, is_output, is_physical, can_monitor, is_terminal (bool) – Select ports by
their flags. If none of them are True, no selection based on flags will be carried out.

Returns list of Port/MidiPort/OwnPort/OwnMidiPort – All ports that satisfy the given con-
ditions.

class jack.Port(port_ptr)
A JACK audio port.

This class cannot be instantiated directly. Instead, instances of this class are returned from Client.
get_port_by_name(), Client.get_ports(), Client.get_all_connections()
and OwnPort.connections. In addition, instances of this class are available in the call-
backs which are set with Client.set_port_registration_callback(), Client.
set_port_connect_callback() or Client.set_port_rename_callback.

Note, however, that if the used Client owns the respective port, instances of OwnPort (instead of Port)
will be created. In case of MIDI ports, instances of MidiPort or OwnMidiPort are created.

Besides being the type of non-owned JACK audio ports, this class also serves as base class for all other port
classes (OwnPort, MidiPort and OwnMidiPort).

New JACK audio/MIDI ports can be created with the register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

name
Full name of the JACK port (read-only).

shortname
Short name of the JACK port, not including the client name.

Must be unique among all ports owned by a client.

May be modified at any time. If the resulting full name (including the client_name: prefix) is
longer than port_name_size(), it will be truncated.

aliases
Returns a list of strings with the aliases for the JACK port.

set_alias(alias)
Set an alias for the JACK port.

Ports can have up to two aliases. If both are already set, this function will return an error.

unset_alias(alias)
Remove an alias for the JACK port.

If the alias doesn’t exist this function will return an error.

uuid
The UUID of the JACK port.

is_audio
This is always True.

is_midi
This is always False.

is_input
Can the port receive data?

is_output
Can data be read from this port?

is_physical
Does it correspond to some kind of physical I/O connector?

can_monitor
Does a call to request_monitor() make sense?

is_terminal
Is the data consumed/generated?

request_monitor(onoff)
Set input monitoring.

If can_monitor is True, turn input monitoring on or off. Otherwise, do nothing.

Parameters onoff (bool) – If True, switch monitoring on; if False, switch it off.

class jack.MidiPort(port_ptr)
A JACK MIDI port.

This class is derived from Port and has exactly the same attributes and methods.

This class cannot be instantiated directly (see Port).

New JACK audio/MIDI ports can be created with the register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

See also:

Port, OwnMidiPort

is_audio
This is always False.

is_midi
This is always True.

class jack.OwnPort(port_ptr, client)
A JACK audio port owned by a Client.

This class is derived from Port. OwnPort objects can do everything that Port objects can, plus a lot
more.

This class cannot be instantiated directly (see Port).

New JACK audio/MIDI ports can be created with the register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

number_of_connections
Number of connections to or from port.

connections
List of ports which the port is connected to.

is_connected_to(port)
Am I directly connected to port?

Parameters port (str or Port) – Full port name or port object.

connect(port)
Connect to given port.

Parameters port (str or Port) – Full port name or port object.

See also:

Client.connect()

disconnect(other=None)
Disconnect this port.

Parameters other (str or Port) – Port to disconnect from. By default, disconnect from all
connected ports.

unregister()
Unregister port.

Remove the port from the client, disconnecting any existing connections. This also removes the
port from Client.inports, Client.outports, Client.midi_inports or Client.
midi_outports.

get_buffer()
Get buffer for audio data.

This returns a buffer holding the memory area associated with the specified port. For an output port,
it will be a memory area that can be written to; for an input port, it will be an area containing the data
from the port’s connection(s), or zero-filled. If there are multiple inbound connections, the data will
be mixed appropriately.

Caching output ports is DEPRECATED in JACK 2.0, due to some new optimization (like “pipelin-
ing”). Port buffers have to be retrieved in each callback for proper functioning.

This method shall only be called from within the process callback (see Client.
set_process_callback()).

get_array()
Get audio buffer as NumPy array.

Make sure to import numpy before calling this, otherwise the first call might take a long time.

This method shall only be called from within the process callback (see Client.
set_process_callback()).

See also:

get_buffer()

class jack.OwnMidiPort(*args, **kwargs)
A JACK MIDI port owned by a Client.

This class is derived from OwnPort and MidiPort, which are themselves derived from Port. It has
the same attributes and methods as OwnPort, but get_buffer() and get_array() are disabled.
Instead, it has methods for sending and receiving MIDI events (to be used only from within the process
callback – see Client.set_process_callback()).

This class cannot be instantiated directly (see Port).

New JACK audio/MIDI ports can be created with the register() method of Client.inports,
Client.outports, Client.midi_inports and Client.midi_outports.

get_buffer()
Not available for MIDI ports.

get_array()
Not available for MIDI ports.

max_event_size
Get the size of the largest event that can be stored by the port.

This returns the current space available, taking into account events already stored in the port.

lost_midi_events
Get the number of events that could not be written to the port.

This being a non-zero value implies that the port is full. Currently the only way this can happen is if
events are lost on port mixdown.

incoming_midi_events()
Return generator for incoming MIDI events.

JACK MIDI is normalised, the MIDI events yielded by this generator are guaranteed to be complete
MIDI events (the status byte will always be present, and no realtime events will be interspersed with
the events).

Yields

• time (int) – Time (in samples) relative to the beginning of the current audio block.

• event (buffer) – The actual MIDI event data.

Warning: The buffer is re-used (and therefore overwritten) between iterations. If
you want to keep the data beyond the current iteration, please make a copy.

clear_buffer()
Clear an event buffer.

This should be called at the beginning of each process cycle before calling
reserve_midi_event() or write_midi_event(). This function may not be called
on an input port.

write_midi_event(time, event)
Create an outgoing MIDI event.

Clients must write normalised MIDI data to the port - no running status and no (one-byte) realtime
messages interspersed with other messages (realtime messages are fine when they occur on their own,
like other messages).

Events must be written in order, sorted by their sample offsets. JACK will not sort the events for you,
and will refuse to store out-of-order events.

Parameters

• time (int) – Time (in samples) relative to the beginning of the current audio block.

• event (bytes or buffer or sequence of int) – The actual MIDI event data.

Note: Buffer objects are only supported for CFFI >= 0.9.

Raises JackError – If MIDI event couldn’t be written.

reserve_midi_event(time, size)
Get a buffer where an outgoing MIDI event can be written to.

Clients must write normalised MIDI data to the port - no running status and no (one-byte) realtime
messages interspersed with other messages (realtime messages are fine when they occur on their own,
like other messages).

Events must be written in order, sorted by their sample offsets. JACK will not sort the events for you,
and will refuse to store out-of-order events.

Parameters

• time (int) – Time (in samples) relative to the beginning of the current audio block.

• size (int) – Number of bytes to reserve.

Returns buffer – A buffer object where MIDI data bytes can be written to. If no space could
be reserved, an empty buffer is returned.

class jack.Ports(client, porttype, flag)
A list of input/output ports.

This class is not meant to be instantiated directly. It is only used as Client.inports, Client.
outports, Client.midi_inports and Client.midi_outports.

The ports can be accessed by indexing or by iteration.

New ports can be added with register(), existing ports can be removed by calling their
unregister() method.

register(shortname, is_terminal=False, is_physical=False)
Create a new input/output port.

The new OwnPort or OwnMidiPort object is automatically added to Client.inports,
Client.outports, Client.midi_inports or Client.midi_outports.

Parameters

• shortname (str) – Each port has a short name. The port’s full name contains the
name of the client concatenated with a colon (:) followed by its short name. The
port_name_size() is the maximum length of this full name. Exceeding that will
cause the port registration to fail.

The port name must be unique among all ports owned by this client. If the name is not
unique, the registration will fail.

• is_terminal (bool) – For an input port: If True, the data received by the port will not
be passed on or made available at any other port. For an output port: If True, the data
available at the port does not originate from any other port

Audio synthesizers, I/O hardware interface clients, HDR systems are examples of
clients that would set this flag for their ports.

• is_physical (bool) – If True the port corresponds to some kind of physical I/O con-
nector.

Returns Port – A new OwnPort or OwnMidiPort instance.

clear()
Unregister all ports in the list.

See also:

OwnPort.unregister()

class jack.RingBuffer(size)
Create a lock-free ringbuffer.

A ringbuffer is a good way to pass data between threads (e.g. between the main program and the process
callback), when streaming realtime data to slower media, like audio file playback or recording.

The key attribute of a ringbuffer is that it can be safely accessed by two threads simultaneously – one
reading from the buffer and the other writing to it – without using any synchronization or mutual exclusion
primitives. For this to work correctly, there can only be a single reader and a single writer thread. Their
identities cannot be interchanged.

Parameters size (int) – Size in bytes. JACK will allocate a buffer of at least this size (rounded
up to the next power of 2), but one byte is reserved for internal use. Use write_space to
determine the actual size available for writing.

write_space
The number of bytes available for writing.

write(data)
Write data into the ringbuffer.

Parameters data (buffer or bytes or iterable of int) – Bytes to be written to the ringbuffer.

Returns int – The number of bytes written, which could be less than the length of data if
there was no more space left (see write_space).

See also:

write_space, write_buffers

write_buffers
Contains two buffer objects that can be written to directly.

Two are needed because the space available for writing may be split across the end of the ringbuffer.
Either of them could be 0 length.

This can be used as a no-copy version of write().

When finished with writing, write_advance() should be used.

Note: After an operation that changes the write pointer (write(), write_advance(),
reset()), the buffers are no longer valid and one should use this property again to get new ones.

write_advance(size)
Advance the write pointer.

After data has been written to the ringbuffer using write_buffers, use this method to advance the
buffer pointer, making the data available for future read operations.

Parameters size (int) – The number of bytes to advance.

read_space
The number of bytes available for reading.

read(size)
Read data from the ringbuffer.

Parameters size (int) – Number of bytes to read.

Returns buffer – A buffer object containing the requested data. If no more data is left (see
read_space), a smaller (or even empty) buffer is returned.

See also:

peek(), read_space, read_buffers

peek(size)
Peek at data from the ringbuffer.

Opposed to read() this function does not move the read pointer. Thus it’s a convenient way to
inspect data in the ringbuffer in a continuous fashion. The price is that the data is copied into a newly
allocated buffer. For “raw” non-copy inspection of the data in the ringbuffer use read_buffers.

Parameters size (int) – Number of bytes to peek.

Returns buffer – A buffer object containing the requested data. If no more data is left (see
read_space), a smaller (or even empty) buffer is returned.

See also:

read(), read_space, read_buffers

read_buffers
Contains two buffer objects that can be read directly.

Two are needed because the data to be read may be split across the end of the ringbuffer. Either of
them could be 0 length.

This can be used as a no-copy version of peek() or read().

When finished with reading, read_advance() should be used.

Note: After an operation that changes the read pointer (read(), read_advance(), reset()),
the buffers are no longer valid and one should use this property again to get new ones.

read_advance(size)
Advance the read pointer.

After data has been read from the ringbuffer using read_buffers or peek(), use this method to
advance the buffer pointers, making that space available for future write operations.

Parameters size (int) – The number of bytes to advance.

mlock()
Lock a ringbuffer data block into memory.

Uses the mlock() system call. This prevents the ringbuffer’s memory from being paged to the swap
area.

Note: This is not a realtime operation.

reset(size=None)
Reset the read and write pointers, making an empty buffer.

Note: This is not thread safe.

Parameters size (int, optional) – The new size for the ringbuffer. Must be less than allocated
size.

size
The number of bytes in total used by the buffer.

See also:

read_space, write_space

class jack.Status(code)
Representation of the JACK status bits.

failure
Overall operation failed.

invalid_option
The operation contained an invalid or unsupported option.

name_not_unique
The desired client name was not unique.

With the use_exact_name option of Client, this situation is fatal. Otherwise, the name is modified
by appending a dash and a two-digit number in the range “-01” to “-99”. Client.name will return
the exact string that was used. If the specified name plus these extra characters would be too long, the
open fails instead.

server_started
The JACK server was started for this Client.

Otherwise, it was running already.

server_failed
Unable to connect to the JACK server.

server_error
Communication error with the JACK server.

no_such_client
Requested client does not exist.

load_failure
Unable to load internal client.

init_failure
Unable to initialize client.

shm_failure
Unable to access shared memory.

version_error
Client’s protocol version does not match.

backend_error
Backend error.

client_zombie
Client zombified failure.

class jack.TransportState(code)
Representation of the JACK transport state.

See also:

Client.transport_state, Client.transport_query()

exception jack.JackError
Exception for all kinds of JACK-related errors.

exception jack.CallbackExit
To be raised in a callback function to signal failure.

See also:

Client.set_process_callback(), Client.set_blocksize_callback(), Client.
set_samplerate_callback(), Client.set_port_rename_callback(), Client.
set_graph_order_callback(), Client.set_xrun_callback()

jack.position2dict(pos)
Convert CFFI position struct to a dict.

jack.version()
Get tuple of major/minor/micro/protocol version.

jack.version_string()
Get human-readable JACK version.

jack.client_name_size()
Return the maximum number of characters in a JACK client name.

This includes the final NULL character. This value is a constant.

jack.port_name_size()
Maximum length of port names.

The maximum number of characters in a full JACK port name including the final NULL character. This
value is a constant.

A port’s full name contains the owning client name concatenated with a colon (:) followed by its short name
and a NULL character.

jack.set_error_function(callback=None)
Set the callback for error message display.

Set it to None to restore the default error callback function (which prints the error message plus a newline
to stderr). The callback function must have this signature:

callback(message: str) -> None

jack.set_info_function(callback=None)
Set the callback for info message display.

Set it to None to restore default info callback function (which prints the info message plus a newline to
stderr). The callback function must have this signature:

callback(message: str) -> None

jack.client_pid(name)
Return PID of a JACK client.

Parameters name (str) – Name of the JACK client whose PID shall be returned.

Returns int – PID of name. If not available, 0 will be returned.

6 Version History

Version 0.4.5 (2018-09-02):

• Fix issue #54; other minor improvements

Version 0.4.4 (2018-02-19):

• Port.set_alias(), Port.unset_alias() and Port.aliases, thanks to Jośe Fernando
Moyano

Version 0.4.3 (2017-12-30):

• switch to CFFI out-of-line ABI mode (to reduce import time)

Version 0.4.2 (2016-11-05):

• new examples: showtime.py, midi_sine_numpy.py and play_file.py

• new option only_available for port callbacks

Version 0.4.1 (2016-05-24):

• new property jack.Client.transport_frame, deprecating jack.Client.
transport_locate()

Version 0.4.0 (2015-09-17):

• new argument to xrun callback (see jack.Client.set_xrun_callback()), jack.
Client.xrun_delayed_usecs was removed

• jack.Client.transport_reposition_struct()

• callbacks no longer have to return anything, instead they can raise jack.CallbackExit on error

• midi_sine.py example

Version 0.3.0 (2015-07-16):

• jack.RingBuffer, implemented by Alexandru Stan

• jack.Client.set_timebase_callback(), jack.Client.transport_query(),
jack.Client.transport_query_struct(), with the help of Julien Acroute

• jack.Client.transport_state, jack.STOPPED, jack.ROLLING, jack.STARTING,
jack.NETSTARTING, jack.position2dict()

• the userdata argument was removed from all callbacks

• compatibility with the official JACK installer for Windows, thanks to Julien Acroute

Version 0.2.0 (2015-02-23):

• MIDI support (jack.MidiPort, jack.OwnMidiPort, jack.Client.midi_inports,
jack.Client.midi_outports, . . .)

• ignore errors in jack.Client.deactivate() by default, can be overridden

• optional argument to jack.OwnPort.disconnect()

• several examples (chatty_client.py, thru_client.py, midi_monitor.py and
midi_chords.py)

• jack.Port.is_physical, courtesy of Alexandru Stan

• jack.Status

Version 0.1.0 (2014-12-15): Initial release

7 Other Python Modules for JACK

PyJack https://sourceforge.net/projects/py-jack/

jacklib from Cadence https://github.com/falkTX/Cadence/blob/master/src/jacklib.py

jacker https://github.com/fphammerle/jacker

https://sourceforge.net/projects/py-jack/
https://github.com/falkTX/Cadence/blob/master/src/jacklib.py
https://github.com/fphammerle/jacker

	Requirements
	Installation
	Usage
	Contributing
	API Documentation
	Version History
	Other Python Modules for JACK

